如图,在扇形AOB中∠AOB=60° AO=6,D为弧AB的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:16:30
S阴影=60×π(9²-6²)/360=45π/6cm²中学答案=23.55cm²小学答案
……再答:题解如下:∵AO=OB,CO=OD且∠AOB=∠COD∴∠AOC=∠BOD∴△AOC与△BOD全等∴AC=BD也就是说无论△COD绕点O如何旋转,AC与BD都是相等。把∠AOB=∠COD=9
(1)如图所示:(2)扇形的圆心角是120°,半径为6cm,则扇形的弧长是:nπr180=120•π•6180=4π则圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π
小圆半径DO长是:3*3.14*4/3.14/2=6(厘米)大圆半径AO长是:DO+AD=6+3=9(厘米)阴影部分的面积是:9*9*3.14/4-6*6*3.14/4=35.325(平方厘米)
题目不完整无法完成缺图,不知道OB的长度或者三角形的锐角大小!1)求△OPQ的面积S,可用面积公式s=ah/2;所以S=OQ*(P的纵坐标)/2=Vq*T*(P的纵坐标)/2=Vq*T*(OA-Vp*
(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长(3)OD=√(4-x^2),
根据弧CD的长度和∠AOB=45可以算出小圆半径弧CD=2πr*45°/360°r=12大圆半径=r+AD=15后面就好算了
∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=12∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l)
设扇形AOB所在圆半径为R,此扇形内切圆的半径为r,如图所示,则有R=r+2r,AB=l=π2•R.由此可得r=2(2−1)lπ=2(2−1)π,则内切圆的面积S=πr2=12−82πl2=12−82
设扇形半径为R,内切圆半径为r,内切圆圆心为O’,则:弧AB长度l=π/3*R即:R=3l/π又∠AOB=π/3∴1/2∠AOB=π/6可得:OO'=2r则2r+r=R∴r=1/3R=l/πS=π*r
∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=1/2∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l
是这题目吗?在平面直角坐标系中,三角形AOB的位置如图,已知∠AOB=90°,AO=BO,点A的坐标为[-3,1],求:求点B的坐标;2.求过A,O,B三点的抛物线的解析式;3.设点B关于抛物线的对称
弧长=45º*π*5/180º=5π/4(2)对照你的图形AOB按逆时针方向:设FB=aDB=aDO=DC=a半径OB=2a=5a=5/2
扇形AOB的面积=πR²*45°/360°=25π/8设正方形边长=X,CD=DE=EF=X,OD=CD=X连接OF,OF=5OF²=OE²+EF²5²
关系为AC=BD证明:∵∠AOB=∠COD=90°∴∠AOC=∠BOD∵OA=OB,OC=OD∴△AOC≌△BOD∴AC=BD
连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD
原题中弧CD应该=3πcm吧OD=3π*(360/45)/2=12cmAO=4+12=16cmS阴影=(16^2-12^2)π/(360/45)=14πcm^2如果是弧CD应该=3cm方法是一样的,改
周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90
∵OC=4,点C在AB上,CD⊥OA,∴DC=OC2-OD2=16-OD2∴S△OCD=12OD•16-OD2∴S△OCD2=14OD2•(16-OD2)=-14OD4+4OD2=-14(OD2-8)