如图,在射线OM,ON上分别取OA=OB,过A作DA垂直OM

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:05:05
如图,在射线OM,ON上分别取OA=OB,过A作DA垂直OM
如图,∠MON=90o,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B是ON上的任意一点,在

(1)△AOB≌△ADF(SAS)∴∠ADF=∠AOB=90°(2)过E作EG⊥FC交FC于G,同理可证△FGE≌△ADF,∴FG=AD=DC,FD=GE,∵FG=FD+DG,DC=DG+GC,∴FD

如图,已知M是∠AOB内的一点,满足点M到OA,OB的两边的距离MC,MD相等,做射线OM,在射线OM上取一点P,连接P

图中所有相等的线段有OC=OD,PC=PD,MC=MD原因如下:∵∠MCO=∠MDO=90°,MC=MD,OM=OM∴△OCM≌△ODM(直角三角形HL)∴OC=OD,∠COM=∠DOM又∵OP=OP

已知角AOB=150度 如图,若在角AOB的内部引一条射线OC,OM、ON分别平分角AOC、∠BO

角mon相当于角AOB的一半为75度再问:��֪��AOB��150����ͼ,���ڽ�AOB���ڲ�����������OC��OD���ҽ�COD��3O�ȣ�OM��ON�ֱ�ƽ�ֽ�AOD

如图,在∠MON的边OM,ON上分别取OA=OB,过A作DA⊥OM于A,交ON于D,过B作EB⊥ON于B,交OM于E,设

Rt△OAC和Rt△OBC中,∵OA=OB,OC=OC∴Rt△OAC全等于Rt△OBC∴∠MOC=∠NOC即OC平分∠MON

要将如图中的∠MON平分,小梅设计了如下方案:在射线OM,ON上分别取OA=OB,AD,EB交于点C,

∵∠AOD=∠BOE,OA=OB,∠OAD=∠OBE∴在Rt△OAD与Rt△OBE中Rt△OAD≌Rt△OBE∴OD=OE,∠ODA=∠OEB∵OA=OB∴AE=BD在Rt△ACE与Rt△BCD中∵∠

:如图,∠MON=60°,点A、B分别在射线OM、ON上移动,

在BC反向延长线上取点DAC平分∠OAB,所以∠CAB=∠OAB/2,BD平分∠ABN,所以∠ABD=∠ABN/2∠ABN=180-∠OBA,因此∠ABD=90-∠OBA/2因为∠ABD为△ABC外角

如图已知射线OM与射线ON互相垂直,B、A分别为OM、MN上一动点,角ABM、角BAN的平分线相交于C,求证:B、A在O

设角BAO为X度,则角ABO为90-X度.角NAB为180-X,角ABM为90+X.因为AC,BC平分角NAB与角MBA,所以角CAB为90-0.5X度,角CBA为45+0.5X度.角C为180-(9

工人师傅常用角尺平分一个任意角.如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,

刻度相同,顶点C垂直平分AB,反过来,OA=OB,角平分线也垂直平分AB,也就平分ㄥAOB.

如图,在∠MON的边OM,ON上分别取OA=OB,过A作ON⊥AC,过B作OM⊥BD,分别交ON,OM于点C、D,交点E

∵∠CAO=∠ACO-∠AOB∠DBO=∠BDO-∠AOB且ON⊥AC,OM⊥BD∴∠ACO=∠BDO=90°∴∠CAO=∠DBO∵OA=OB,OE是公共边∴△AOE≌△BOE∴∠AOE=∠BOE∴O

如图,OM⊥ON.已知边长为2的正三角形ABC,两顶点A、B分别在射线OM,ON上滑动,滑动过程中,连接OC,则OC的长

取AB中点D,连OD,DC,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,∵△ABC为等边三角形,D为中点,∴BD=1,BC=2,根据勾股定理得:CD=3,又△AOB

如图,角MON=90°,点A,B分别在射线OM,ON上运动,BE平分角NBA,BE的反方向延长线与角BAO的平分线交与点

答:∠C=45°.证明如下:∵∠CBO=∠ABN/2=(90°+∠BAO)/2=45°+∠BAO/2 ∠ABO=90°-∠BAO∴∠C=180°-∠CBO-∠ABO-∠BAO/2=180°-(45°+

已知:如图,∠MON=90°,点A、B分别在射线OM、ON上的两个动点,BE平分∠ABM,BE的反向延长线与∠OAB的角

大小不随之变化证明:<ABD=1/2<ABN=1/2(<O+<OAB)=1/2<O+1/2<OAB又:1/2<OAB=<CAB所以<ABD=1/2<O+<CAB又:<ABD=<C+<CAB所以:<C=

如图,∠MON=90°,点A,B分别在射线OM,ON上运动,BE平分∠NBA,BE的反向延长线与∠BAO的平分线交于点C

(1)根据三角形的外角性质,∠ABN=∠AOB+∠BAO=90°+45°=135°,∵BE平分∠NBA,AC平分∠BAO,∴∠ABE=12∠ABN=67.5°,∠BAC=12∠BAO=22.5°,∴∠

如图7-X-10,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的平分线与∠OBA

不论A、B两点怎样移动,∠ACB都等于45°∵∠MON=90°∴∠OAB+ ∠ABO=90°又∵AC是∠OAB的平分线,∴∠CAB=(1/2)∠OAB由图∠OBD=∠MON+∠OAB=90°+∠OAB

如图 如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,

∠C=∠DBC-∠BAC=1/2(∠DBO-∠BAO)=1/2(180°-∠OBA-∠BAO)=1/2(180°-90°)=45°所以大小不变再问:为什么是=1/2(∠DBO-∠BAO)再答:DC,A

如图,角MON=90度,在角MON的内部有一个正方形ABCD,点A、C分别在射线OM、ON上,点B1是ON上的任意一点,

题目中有一些字母不对应,应当是下图.∠C1CN=45°. 证明:在OA上截取OE=OB1,连结B1E,∵正方形AOCD,OA=OC,∠O=90°,∴AE=B1C,∠OEB1=45°,∠OAB

如图,角MON=60度,点A,B分别在射线(不含端点)OM,ON上运动,BD是角NBA的平分线,BD的反向延长线与角BA

(1)∠ABO=180°-2∠DBN(2)猜想:∠C不随A、B的运动而变化.理由如下:由题,设∠ABD=∠DBN=α,∠CAB=∠CAO=β,∠C简写为C.C+β=α60°+2β=2α所以C=30°为

已知,如图,∠MON=90°,点A,B分别在射线ON,OM上移动,

/>∠C的大小保持不变.理由:∵∠ABN=90°+∠OAB,AC平分∠OAB,BD平分∠ABN,∴∠ABD=12∠ABN=12(90°+∠OAB)=45°+12∠OAB,即∠ABD=45°+∠CAB,