如图,在半径为2的扇形AOB中,角AOB=90度,点C为弧AB上的一个动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:50:10
先作点C关于直线OA的对称点C′,连接BC′,则BC′的长即为PB+PC的最小值,再过点O作OD⊥BC于点D,连接OC′,∵BC=2AC,∠AOB=90°,∴AC=30°,∴∠AOC′=30°,∴∠B
设OR=OS=m,SR=PQ=y,SP=QR=x,则:矩形面积S=xy而:(1/2)y]/m=cos30°=(√3)/2,即y=(√3)mx/(2-m)=sin30°=1/2,即x=(2-m)/2所以
画就自己画了S=120/360*π*1²=π/3
(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长(3)OD=√(4-x^2),
连接圆心和弧上面的一点形成OE,设角EOB为a.S=R^2[sinacosa-(√3/3)sin^2a]=R^2(1/2sin2a+√3/6cos2a-√3/6)=R^2[√3/3(sin2a+b)-
设圆O1半径为r1,o2半径为r2有:r1/(r-r1)=sinθ;r2/(r-2r1-r2)=sinθ化简,有:r2=rsinθ(1-sinθ)/(1+sinθ)^2求最值,可以用求导的方法,sin
如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长
(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长(3)OD=√(4-x^2),
∵∠AOB=120°,半径OE平分∠AOB,∴∠AOE=∠EOB=60°,阴影部分的面积等于扇形OAE的面积,∴阴影扇形部分的面积=60π×4360=2π3.所以,阴影部分的面积为2π3.
设一边为X另一边为Y面积S=XY连接O与圆狐上的一点.在这个三角形里面一个角150度三边分别是XYR用余弦定理R^2=X^2+Y^2-2XYcos150'化简就是√3XY=R^2-(X^2+Y^2)≤
∵n=120°,R=2,∴S=n•π•R²/360°=120°•π•2²/360°=4π/3.
答案是:(5/8)π-2/3图我就不做出来了,这题我做过,相信楼主一定有图了.我就直接写步骤:连接OF,∵∠AOB=45°,∠CDO=90°∴∠OCD=∠AOB=45°∴OD=CD=DE=FE设正方形
弧长=45º*π*5/180º=5π/4(2)对照你的图形AOB按逆时针方向:设FB=aDB=aDO=DC=a半径OB=2a=5a=5/2
扇形AOB的面积=πR²*45°/360°=25π/8设正方形边长=X,CD=DE=EF=X,OD=CD=X连接OF,OF=5OF²=OE²+EF²5²
如图,弧BC的度数是弧AC的的2倍,即有∠BOC=2∠AOC而∠AOB=90°,所以∠BOC=60°、∠AOC=30°做C点关于OA的对称点D,连接BD,显然BD的长度是PB+PC的最小值∠BOD=1
扇形AOB的面积=2²πx2/3=8π/3
等边三角形的外接圆半径为其内切圆半径的两倍,所以AO=4厘米AO延线交BC于D,则OD=2厘米.连接CO,设等边三角形的一边长为x,则CD=x/2.CD^2+OD^2=CO^2(x/2)^2+2^2=
∵OC=4,点C在AB上,CD⊥OA,∴DC=OC2-OD2=16-OD2∴S△OCD=12OD•16-OD2∴S△OCD2=14OD2•(16-OD2)=-14OD4+4OD2=-14(OD2-8)
S扇=(n/360)πR²=(120/360)*3.14*1,约等于:1.046