如图,在三棱柱abca1b1c1中,ab垂直ac顶点a1在底面abc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 01:09:59
证明:(I)取AB的中点M,∵AF=14AB,∴F为AM的中点,又∵E为AA1的中点,∴EF∥A1M在三棱柱ABC-A1B1C1中,D,M分别为A1B1,AB的中点,∴A1D∥BM,A1D=BM,∴A
△CDE的面积不等于CD*DE/2吗CD垂直于平面ABB1A1,所以CD垂直于DE
图你有了,我就不发了如图,设BD=X,因为三角形ADC1为等腰之角三角型,且有正三棱柱,易知DB1=X,则CC1=BB1=2X,有AD^2=4+X^2=C1D^2推出AC1^2=2*X^2+8在三角形
类似用剪刀剪平面五边形.剪去一个三角形.可能是四棱柱.过两个顶点切.可能是五棱柱.过一个顶点切.可能是六棱柱.不过顶点切.再问:是什么意思?我怎么看不懂呢再答:给你一个五边形,切一刀,去掉一个三角形。
面积:(20根号300)+2100体积:350根号300
1)因为A1E比EB=A1F比FC所以EF//BC所以EF1EF//平面ABC(2)因为A1D⊥B1CA1D⊥CC1所以A1D⊥平面BB1C1C又因为A1D属于面A1FD所以平面A1FD垂直于平面BB
由题:设面积AEF为s1,ABC=A1B1C1=s,三棱柱高位h;V((AEF)-(A1B1C1))=V1;V((BCFE)-(B1C1)=V2;总体积为:V计算体积:V1=1/3*h*(s1+s+√
解题思路:一条线和一个平面中一条直线平行就说线平行面。解题过程:
改用向量的方法,ef与A1B1没有直接联系必须借助其他的东西来证明
连接A1B交AB1于E,则E为A1B中点,又D为BC中点,故A1C平行DE(中位线平行定理)DE在平面AB1D上,故A1C平行面AB1D
宽是2吧?将三棱柱展开成一个长方形BB1C1CBB1=2,B1C1=3*2=6则最短路程是2根号10第二问就是他说的
三棱柱的展开图【是以地面周长为一边、侧棱长为一边的平行四边形】
证明:(1)因为三棱柱ABC-A1B1C1是正三棱柱,所以C1C⊥平面ABC,又AD⊂平面ABC,所以C1C⊥AD,又点D是棱BC的中点,且△ABC为正三角形,所以AD⊥BC,因为BC∩C1C=C,所
需要求证的应该是:CE∥平面A1BD1. 若是这样,则方法如下:令A1B的中点为F.∵ABC-A1B1C1是三棱柱,且AA1⊥平面A1B1C1,∴BB1=CC1、BB1∥D1C1.∵E、F分别是A1
(I)证明:∵AA1C1C是正方形,∴AA1⊥AC.又∵平面ABC⊥平面AA1C1C,平面ABC∩平面AA1C1C=AC,∴AA1⊥平面ABC.(II)由AC=4,BC=5,AB=3.∴AC2+AB2
解题思路:找线面角解题过程:见附件最终答案:略
(1)证明∵正三棱柱∴BC//=B1C1∵BD=BC∴BD//=B1C1∴四边形BDC1B1是平行四边形∴BC1//DB1∵DB1在面AB1D内∴BC1//面AB1D(2)∵正三棱柱∴BB1⊥面ABC
最小为0,最大为3倍根号3/4pi*V三角形一边收缩接近0,时最小几乎为0三条边一样长的时候体积最大.
证明:(1)因为E,F分别是A1B,A1C的中点,所以EF∥BC,又EF⊄面ABC,BC⊂面ABC,所以EF∥平面ABC;(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A