如图,在△ABC中,CE是AB边上的中线,CD垂直AB于D,且AB=5,BC=4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:45:31
1、证三角形ACD全等于三角形BCE.AB=AC,CE=CD,角ACD=角BCE=90-角DCB.2、直角三角形角ADC=角BEC,故角BEC+角CDB=180度,角DCE=90度,四边形DCEB内角
作ΔABC的中线BF,∵AB=AC,AE=1/2AB,AF=1/2AC,∴AE=AF,又∠A=∠A,∴ΔABF≌ΔACE,∴CE=BF,∵BF分别为AD、WC的中点,∴BF是ΔADC中中位线,∴CD=
证明:∵CE⊥AB于E,DF⊥AB于F,∴CE∥DF,∴∠1=∠4,∠2=∠3,∵AC∥DE,∴∠3=∠5,∴∠2=∠5,∵CE是∠ACB的平分线,∴∠4=∠5,∴∠1=∠2,∴DF平分∠BDE.
2、△ABC是等边三角形,AD是BC边上的高,所以角DAE=30度,CE=CD,角E=角CDE,角DCE=120度,所以角E=30度,角DAE=角E=30度,所以AD=DE
∵CE=CF∴∠CFE=∠CEF∠CFE和∠BFD是对角∴∠CFE=∠BFD∴∠BFD=∠CEF∵∠CBE+∠CEF=90°∠BFD+∠FBD=90°又∵∠CEF=∠BFD∴∠CBE=∠FBD所以BE
∵CD=DF∴∠DCF=∠DFC∵∠DFC=∠AFE∴∠DCF=∠AFE∵CE⊥AB∴∠AFE+∠BAD=90°∠EBC+∠DCF=90°∴∠BAD=∠EBC∴BD=AD
1.首先,D是等腰三角形底边上的中点,则AD就是底边上的高且AD=8由面积相等原理:AD*BC=CE*AB可得到CE=8*12/10=9.6再者,由三角形CHD相似于三角形CBE可得到:CH/CB=C
证明:∵AB=AC∴∠ABC=∠ACB又∵CE、BD是高∴∠EBC=∠DCB在▲ABC中大括号∠EBC=∠DCB(已证) &nbs
1.作DF平行EC,交BC延长线于F,连接ED,因:ED为三角形ABC的中线,所以:ED平行BC,ED=BC/2四边形EDFC为平行四边形,所以:CF=ED=BC/2,DF=EC=6三角形BDF为RT
如图,连接DE,过E点作EF⊥BC,垂足为F,设DE=2x,依题意,得DE为△ABC的中位线,∴BC=4x,又∵四边形BCDE为等腰梯形,∴BF=12(BC-DE)=x,则FC=3x,∵BD⊥CE,∴
BC中点O为圆心BO为半径作圆,ED在圆上∵BD⊥AC,CE⊥AB,∴∠EBD=∠DCE,∠DEC=∠DBC,∠ADE=∠DEC+∠DCE=∠DBC+∠EBD=∠ABC,又∠A为公共角,∴△ADE∽△
ace=40,bdc=80再问:thankyou再答:别客气,对吗?
不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角
证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵∠A=∠A,∴△ABD∽△ACE,∴ADAE=ABAC,∴ADAB=AEAC,∴△ADE∽△ABC.
CE=12三角形的面积是底*高/2,三角形ABC的面积=AC*BD/2还可以=AB*CE/2所以AC*BD=AB*CE已知AB=10,AC=15,BD=8所以CE=12
连接BM,由△ABC是等腰直角三角形,∠ABM=∠ACB=45°,又M是AC的中点,∴BM=1/2AC=CM,∵CE=BD,∴CME≌BMD∴ME=MD,∠CME=∠DMB则∠CME+∠BME=∠DM
证明:△ABD和△ACE中∠ADB=∠AEC∠A=∠AAB=AC△ABD≌△ACE(AAS)BD=CE
证明:如图,延长CE到F,使EF=CE,连接FB,∵CE是AB边上的中线,∴AE=BE,又∵∠BEF=∠AEC,∴△AEC≌△BEF,∴FB=AC,∠1=∠A,∵BD=AB,∴FB=BD,∵∠3=∠A
证明:过点D做DF∥EC交BC的延长线与F,连结DE.∵D、E分别是AC,AB的中点∴DE∥BC∵DF∥EC∴四边形DECF是平行四边形∴CE=FD∴∠DBC=∠DFB∵DF∥BD∴∠ECB=∠DFB
证明:∵BD、CE是△ABC的高,∴△BCD与△CBE是直角三角形,在Rt△BCD与Rt△CBE中,BC=CBBD=CE,∴Rt△BCD≌Rt△CBE(HL),∴∠ABC=∠ACB,∴AB=AC,即△