如图,在△ABC中,CD⊥AB,垂足为点D,以AB为直径的半圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:22:07
如图,在△ABC中,CD⊥AB,垂足为点D,以AB为直径的半圆
如图,在△ABC中,CD⊥AB于点D,CD²=BD·AD,求证:△ABC是直角三角形

证明;:因为CD垂直AB于D所以角ADC=角CDB=90度因为CD^2=BD*AD所以CD/AD=BD/CD所以三角形ADC和三角形CDB相似所以角A=角BCD因为角A+角ADC+角ACD=180度所

已知如图,在△abc中,cd⊥ab于点d,cd=ad.求证△abc是直角三角形

那条式子其实是射影定理要证明三角形ABC是直角三角形用相似就可以解决再问:用勾股定理呢?再答:CD=AD×BD可变形为CD:BD=AD:CD然后因为垂直所以∠CDB=∠ADC就可以证明三角形CDB∽三

已知,如图,在△ABC中,CD⊥AB于D,CD的平方=AD乘BD.问△ABC是不是Rt△?请说明理由

是∵AD²﹢DC²=AC²BD²+DC²=BC²AC²+BC²=AD²+BD²+2DC²D

如图,在Rt△ABC中,EF是中位线,CD斜边AB上的中线,求证:EF=CD

证明:∵EF是中位线【已知】∴EF=½AB【三角形中位线等于底边的一半】∵CD斜边AB上的中线【已知】∴CD=½AB【直角三角形斜边中线等于斜边的一半】∴EF=CD【等量代换】

如图,在△ABC中,AB=AC,BE⊥AC,CD⊥AB,BE与CD交于点O.

先证明三角形ABE、ACD全等:AB=AC,有一个公共角,各自有一个直角.这样就有角ABE=角ACD.等腰三角形两底角相等.这样角CBO=角BCO,可证明等腰.从全等可以得到AD=AE.公共边AO,各

已知,如图,在△ABC中,∠C=90°.CD⊥AB,AE平分∠CAB.

由题意知:∠eab+∠cfe=90°∠cae+∠aec=90°∵∠cae=∠eab∴∠cef=∠cfe

已知:如图,在△ABC中,∠ACB=90度,CD⊥AB,垂足为点D,

证明三角形全等就行了(角边角原理)ASA由题意可得∠B+∠BCD=∠ECF+∠BCD=90所以∠B=∠ECF又∵∠ACB=∠CEF=90,CE=BC∴△ABC=△FCE(ASA)∴AB=FC

如图已知在△ABC中,∠ABC=90度,CD⊥AB于点D,若∠A=60度,那么AD:AB等于

题有误,应是角ACB=90度因为角ACB=90度角A=60度所以角B=30度所以AC=1/2AB因为CD垂直AB于D所以角ADC=90度所以角ACD=30度所以AD=1/2AC所以AD:AB=1:4

已知:如图,在Rt△ABC中,CD是斜边AB上的高.

(1)相等角A=BCDB=ACD三个直角相等(2)相似三角形ABCACDCBD三个三角形相互相似(对应边的关系已给出)原因:三个角对应相等再问:能不能原因再详细一点啊?好的给高分~!谢谢~!再答:楼下

如图,在Rt△ABC中,CD是斜边AB上的高

证明:角A+角ACD=角BCD+角ACD=90度,得角A=角BCD,在三角形CEF和BMF中,角ECF=BMF=90度,角CFE=BFM,得角E=角FBM,所以,三角形AED与CBM相似,得AE/BC

已知,如图,在Rt△ABC中,CD是斜边AB上的高,

证明:1、∵∠ACB=90∴∠CAB+∠B=90∵CD⊥AB∴∠CAB+∠CAD=90∴∠CAD=∠B∵AE平分∠CAB∴∠CAE=∠BAE∵∠CFE=∠CAD+∠CAE,∠CEF=∠B+∠BAE∴∠

已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,

设AD=X、CD=Y、BC=Z在Rt△ABC中,∠ACB=90°,CD⊥AB所以三角形ACD相似三角形CBD所以AD/CD=CD/BD所以CD平方=AD×BD即Y平方=9X(1)在三角形ACD和三角形

如图,在△ABC中,AD⊥BC,AB+BD=AC+CD.问△ABC是什么三角形?

有题意,有AB^2-BD^2=AC^2-CD^2有(AB+BD)(AB-BD)=(AC+CD)(AC-CD)而AB+BD=AC+CD,有AB-BD=AC-CD将上面两个式子相加有AB=AC,既是等腰三

如图,在△ABC中,CD⊥AB与D,CD²=AD*BD,求证

证明:在三角形ADC与三角形BDC中∵CD是三角形ABC的边AB的高∴∠ADC=∠BDC=90度①又CD^2=AD×BD即CD/AD=BD/CD②由①②得三角形ADC∽三角形BDC(两个三角形的两组对

如图,在Rt△ABC中,∠ACB=90°,已知CD⊥AB,BC=1

(1)∵CD⊥AB,∴∠BDC=90°,∵∠DCB=30°,∴∠B=60°,在Rt△ACB中,∠ACB=90°,∴tan60°=ACBC=3,又BC=1,则AC=3;(2)在Rt△BDC中,tan∠B

如图,在△ABC中,AB=AC,CD⊥AB,求证:∠A=2∠BCD

∵AB=AC∴∠b=∠acb.∵∠a=180°-2∠b∠b+∠bcd=90°所以∠b=90°-∠bcd∴∠a=180°-2(90°-2∠bcd)=180-180+2∠bcd∴∠a=2∠bcd