如图,在RtABC中,∠ABC=90度,∠ACB=30度,将ABC绕点A按逆时针

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:22:16
如图,在RtABC中,∠ABC=90度,∠ACB=30度,将ABC绕点A按逆时针
如图.在△ABC中.BD平分∠ABC.

解;因为三角形的外角等于不相邻的两个内角之和,所以设∠ACB的外角为∠ACE,∠ACE=∠ABC+∠BAC.又因为BD平分∠ABC,所以∠DBC=1/2∠ABC同理:∠ACD=1/2∠ACE=1/2(

在RTABC中 ∠C =90.AB.BC.CA 的长分别为c.a.b求三角形ABC的内切圆半径R拜托了各位

∵2S△abc=ab=(a+b+c)R∴R=ab/(a+b+c)∵∠C=90°∴a+b=c∴2ab=(a+b)-(a+b)=(a+b)-c=(a+b+c)(a+b-c)∴ab=(a+b+c)(a+b-

RtABC三角形中,角ABC=90 m是BC的中点,N在边AC上,且AN=2NC,AM与BN相交于点P ,求AP:PM(

4:1过M点作AC的平行线,与BN交于一点记做Q∵MQ分别是BC和BN的中点∴MQ是△BNC的中位线∴QM:NC=1:2∵AN:NC=2:1在相似三角形△ANP和△QMP中AP:PM=AN:QM=4:

如图,在等腰直角三角形ABC中,

证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH

如图,在三角形ABC中,

http://i159.photobucket.com/albums/t145/l421013/MATH2/CM5.png

在RtABC三角形中,C=90 ,AB,BC,CA的长分别为c,a,b,求三角形ABC的内切圆r

利用面积相等可以求得r.三角形面积一方面等于ab/2,另一方面等于1/2(ar+br+cr)从而有ab/2=1/2(a+b+c)r故r=ab/(a+b+c)

如图,在Rt三角形ABC中...

证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A

如图在三角形abc中 

再答:看得懂吗?再问:嗯,我还有一道再答:稍等再答:再答:再答:请注意我标的角1的位置再问:给了

已知,如图,在三角形ABC中,

∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)

如图,在等边三角形ABC中

解题思路:等边三角形的性质以及全等三角形的性质是解决问题的关键解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prced

如图,在等腰直角三角形ABC中.

连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5

已知:如图,在三角形ABC中,

用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度

如图,在直角三角形ABC 中

三个分别是圆外,圆上,圆外,用勾股定理可以算出来AB=5,然后可以算出高CD=2.4再问:额,谢谢啦再答:第三个是圆内…再答:写错了,骚瑞再问:有没有详细一点的呢?再答:勾股定理你应该熟悉吧…再问:嗯

如图,在RT三角形ABC中

半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π

如图,在△ABC中,

解题思路:可设P、Q两点运动t秒时,PQ有最小值,则PB=6-t,BQ=2t,根据勾股定理可求解题过程:解:设P、Q两点运动t秒时,PQ有最小值,最终答案:略

如图,在Rt△ABC中,

(1)以DE为对称轴,把△ADE翻折至△A'DE,连A'F.A'D=AD=BD,∠A'DE=∠ADE,∠C=∠EDF=90°,∴∠A'DF=90°-∠A'DE=90°-∠ADE=∠BDF,DF=DF,

如图在三角形ABC中

纳尼,上图再答:????

在RtABC三角形中,AB=3根号2,角A=90,角ABC=45度

(1)作DP⊥BCAQ⊥BC∵AB=3根号2,∠A=90,∠ABC=45度∴等腰RT△ABC且BC=6∴AQ=3∵D是AB中点∴DP=1/2AQ=2/3S=1/2BE*DP=1/2t*3=3/2t∴S