如图,在abc中,d是bc中点fe是ad及其延长线的点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:59:56
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
延长ED,使DG=DE,连接CG、FG,∵DF⊥EG,∴EF=FG∵ΔDEB≌ΔGCD(边,角,边)∴BE=CG∵CF+DG>FG(Δ两边之和大于第三边)又∵GF=BE,FG=EF∴BE+CF>EF
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
证明延长ED,使DG=DE,连接CG、FG易得△DEB≌△GCD∴BE=CG∵DE=DG,DF=DF,角EFD=角FDG=90度∴FG=EF∵CF+DG>FG(两边之和大于第三边)GF=BE,FG=E
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
连接EC,EB因为EA是角CAB的平分线又已知EF垂直AB于点F,EG垂直AC交AC的延长线于点G所以,易知EG=EF又有ED垂直平分BC同样易知EC=EB所以两个直角三角形CGE和BFE全等所以BF
1、(1)AB=AE+CE延长ED与AB交与E’可证AE'D≌AED,E'DB≌CED有此得AB=AE+CE(2)CE=7/4延长AD至F.使得AD=DF所以ABD≌CDF所以AB=CF角B=角DCF
(1)连接CD,因为等腰RT△ABC,D是斜边AB中点,所以CD=AD=BD=1/2ABCD⊥AB所以∠A=∠ACD=45°又因为AE=CF所以△ADE≌△CDF(SAS)所以DE=DF(2)因为△A
解题思路:探讨解题过程:请看附件,同学你好,题目是否缺少条件啊,根据条件第一个结论是不成立的啊,是不是我附件中的题目啊。不是的时候请再看看题目是否少条件,应该是一个等腰三角形才行。最终答案:略
1、连接AD∵AB=AC,D是BC的中点∴AD是△ABC的中垂线∵∠A=90°∴∠B=∠C=45°∴∠DAC=45°=∠C∴CD=AD=BD2、∵AN=BM,AD=BD,∠NAD=∠B∴△AND≌BM
证明:在FD的延长线上取点G,使FD=GD,连接BG、EG∵D是BC的中点,∴BD=CD,∵FD=GD,∠FDC=∠BDG∴△FDC≌△BDG(SAS)∴BG=CF,∵在△BGE中BE+BG>EG,∴
延长FD到H,使DH=DF,连接HB.DEF全等DEH,DHB全等DFC所以ED=EF,BH=CF因为BE+BH>ED所以BE+CF>EF
解题思路:平行四边形性质解题过程:见附件同学你好祝你天天开心!最终答案:略
楼主,做一条辅助线.辅助线的位置是,过D点做平行于BE的一条直线.D为BC的中点,所以△BEC相似△DFC,所以CF:CE=1:2,所以EF=FC. 而且,△AME相似△ADF,
因为AD平分角BAC所以角BAD=角DAC又因为D是BC中点所以BD=BC又因为AD是公共边所以三角形ABD全等于三角形ACD所以AB=AC
证明:(1)因为三棱柱ABC-A1B1C1是正三棱柱,所以C1C⊥平面ABC,又AD⊂平面ABC,所以C1C⊥AD,又点D是棱BC的中点,且△ABC为正三角形,所以AD⊥BC,因为BC∩C1C=C,所
在[]内表示向量[BD]*[BA]=|BD|*|BA|cosB[CD]*[CA]=|CD|*|CA|cosC又∵|BA|=|CA|,∠B=∠C根据数量积的几何意义(|BD|为[BA]在[BD]上的射影
∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明