如图,圆o的直径de为8,三角形abc中,角acb=90°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:36:49
连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC
连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
证明:DE是O1切线因为OA=OC所以<A=<C因为O1A=O1D所以<A=<O1DA所以<O1DA=<C所以O1D平行OC所以<ODE=<CED=90度所以DE为O1切线
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
1,连结od,bc;∠oda=∠bca=90度.od平行于bc,o是ab中点,所以d是ac中点,AD=dc.2,找到oa的中点f,f是圆O1的圆心,连结fd,fd平行于oc,因为de⊥oc,所以de⊥
∵CD切⊙O于C,∴∠DCN=∠DAM,又∠CDN=∠ADM,∴△CDN∽△ADM,∴∠CND=∠AMD,∴∠CMN=∠CNM,∴△CMN是以MN为底边的等腰三角形.再问:∵CD切⊙O于C,∴∠DCN
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
设EM=x因为AB,CD是直径,所以CD=AB=8∠E=Rt∠所以CE=√(CD^2-DE^2)=√(64-15)=7则CM=7-x因为M是OB中点,所以AM=4+2=6,BM=2根据相交弦定理可得A
我可能证明的不对,但是还是说一下吧.麻烦在草纸上重新画图证明:连接DO、AD得DO为圆O的半径∴∠ABD=∠ODB又∵AB=AC∴∠ABD=∠ACB∵DE⊥AC∴∠ACB+∠EDC=90°∴∠BDO+
韦达定理:关于x的一元二次方程ax²+bx+c=0的两根x1,x2满足x1+x2=-b/a,x1•x2=c/a设x²-2(m+2)x+2m&su
再问:第二问呢?再问:我也不会再答:再问:太感谢你了!你救了我啊!再答:没事,我也在学切线再问:呵呵再问:我也才学,就是搞不懂再答:多做一点题就好了再问:诶呀。。。。要做题,我本来就脑子笨笨的,额滴个
(1)证明:连接OD∵AD=DC,AO=OB∴OD是△ABC的中位线∴OD∥BC∵DE⊥BC∴DE⊥OD∴DE是圆O的切线(2)∵AB是直径∴∠ADB=90°∵AD=DC∴BA=BC∵∠BDC=∠CE
(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE
由相交弦定理ED*EC=EA*EB解出EA=12cmR=(EA+EB)/2=7cm半径就是7cm如果认为讲解不够清楚,再问:相交弦定理是啥?弱弱的问一句。。。。。我是初三的,能给下证明过程么?再答:当
小德德呢:证明:ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧AE=弧DBC∴弧AC
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以△OEC≌△OBC(SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以
证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE
ME=MG成立,理由如下:如图,连接EO,并延长交⊙O于N,连接BC∵AB是⊙O的直径,且AB⊥DE∴弧AD=弧AE∵点D是优弧ABC的中点∴弧AD=弧DBC∴弧
连接AE,cosD=DE/2R=15^0.5/8sin²D=1-cos²D=1-15/64=49/64sinD=7/8AO=EO,所以∠A=∠AEO因为∠EOB=∠