如图,圆O的直径AB和弦CD相交于点E,若AE=2cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:52:58
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
过O作OH⊥CD交CD于H,连接OD∵AB是园O的直径,AB=AE+BE=6cm∴OA=OB=OD=3cm∴OE=OA-AE=2cm∵∠DEB=60°,OH⊥CD∴EH=OE/2=1cm,CD=2DH
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
过O作OH垂直CD于H直径AB=AE+BE=6cm∴OE=0.5*AB-AE=2cm∵角BED=60°∴EH=1cm由直角三角形OEH和ODH勾股定理得9-DH²=3-1DH=根号6DE=2
连结DO,AB=AE+EB=6,所以DO=3,OE=OA-AE=3-1=2,又∠DEO=60°,由余弦定理OD^2=DE^2+OE^2-2*DE*OE*cos∠DEO,得DE=√6+1又AE*EB=D
过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA-AE=4-2=2,在Rt△OEF中,∠DEB=
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
过圆心O作OF⊥CD于F,连接OD∵AE=1,BE=5∴AB=AE+BE=1+5=6∴OA=AB/2=6/2=3∴EO=OA-AE=3-1=2∵OF⊥CD∴DF=CF=CD/2(垂径分弦)∵∠DEB=
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
解过O作OF⊥CD于F,连结CO,∵AE=6cm,EB=2cm,∴AB=8cm∴OA=1/2AB=4cm,OE=AE-AO=2cm,在Rt△OEB中,∵∠CEA=∠BED=30°,∴OF=1/2OE=
OF=OE*sin(30),AO=(AE+EB)/2=4,OE=AO-EB=2.连结OC,在三角形OFC中OC=AO=4,OF=1,角OFC为直角,可得:CD=2*根号15.
做直径DF,连接CF,设∠CDF为X°.Sin30°÷4=SinX÷2→SinX=0.25CF÷DF=0.25CF=2根据勾股定理→CD=√(8²-2²)=√(60)=2√(15)
连接OC则角C=30度因为角ODC=120度所以OD=OCAD=2OD=10所以AC=10+5=15
连接OD,EO=2,OD=3,∠BED=60°根据余弦定理,有(ED^2+EO^2-OD^2)/(2EO*ED)=COS60=1/2将数值代入,可求得:ED=1+根号6或者1-根号6长度应为正数,故所
解题思路:过B作弦BE,使BE=CD,连接AE,说明△AEB是直角三角形,由斜边大于直角边得出结论解题过程:证明:过B作弦BE,使BE=CD,连接AE∵AB是⊙O直径∴∠AEB=90°∵Rt△AEB中
半径r=OB/2=(AE+EB)/2=(6+2)/2=4(cm)OE=OB-EB=r-EB=4-2=2(cm)∵∠CEA=30°∴OF=OE/2=4/2=2(cm)∴CF=√(OC^2-OF^2)=√
因为AB=8所以圆的半径R=AO=OB=4连接OC则OC=半径=4,过O点坐OF垂直于CD于F点则CF=FDCD=2CF在直角三角形OEF中.OE=OB-EB=2,∠CEA=30°所以OF=1.在直角
1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的