如图,圆o的直径ab为4,角abc等于30度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 12:47:56
如图,圆o的直径ab为4,角abc等于30度
21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

如图已知AB为圆O的直径,PA、PB是圆O的切线,A、C为切点 ∠BAC=30°

(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO

如图AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H

1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠

如图,AB为圆O的直径,AB=AC,BC交圆O于点E,角BAC=45度

1.∵AB=AC,∠A=45°∴∠C=67.5°∵AB为直径∴∠ACB=90°∴∠EBC=90°-67.5°=22.5°2BD=CD证明:连接AD∵AB是直径∴AD⊥BC∵AB=AC∴BD=CD(等腰

如图,AB为圆O的直径,AD切圆O于点A,圆O的弦BC平行于OD

证明:连接OC∵OB=OC∴∠OBC=∠OCB∵OD∥BC∴∠AOD=∠OBC,∠COD=∠OCB∴∠AOD=∠COD∵OA=OC,OD=OD∴△AOD≌△COD(SAS)∴∠OCD=∠OAD∵AD切

如图,已知AB是圆O的直径,AP是圆O的切线,A为切点,BP与圆O交于点C,D为AP的中点,求证CD为圆O切线

可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D

如图,AB为圆O的直径,CD为圆O的弦,且CD⊥AB,垂足为H,∠OCD的平分线CE交圆O于点E,连接OE,求证:E为A

∵AB为直径∴∠ACB=90°∵CD⊥AB∴∠ACH+∠CAB=90°∠ABC+∠CAB=90°∴∠ACH=∠ABC∵O为圆心,AB为直径∴OB=OC=OA∴∠OCB=∠OBC=∠ABC∵CE为∠OC

如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,CD为圆O的直径,∠EOD=72°,AE交圆O于B,且AB=OC,求∠A的度数.

连接OB,因为AB=OC,圆的半径均相等,所以OB=OC=AB所以,∠A=∠BOC,设为x度.因为∠EOD=72°,所以∠EOC=108°由OB=OE得∠BEO=∠EBO设为y度.所以x+y+108=

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

如图ab为圆o的直径 pa pc是圆o的切线 a c为切点 ab=4 ac=2倍的根号三

1,连接BC,因为AB是圆的直径,所以∠ACB=90°.在Rt△ABC中,sin∠B=2根3/4=根3/2..所以∠B=60°.因为PC,PD是圆的切线,A,C是切点.所以PA=PC,有弦切角定理得,

如图已知ab为圆o的直径cd在圆o上点e在圆o外角eac=角d=60

连接OC,则OB=OC∴∠OBC=∠OCB∵∠EAC=∠D=60°∴∠ABC=60°∴∠OBC=∠OCB=∠BOC=60°,∠AOC=120°∴BC=OB=OC∵BC=4∴OB=4∴AB=8∴⌒AC=

如图,AB为圆O的直径,C是圆O上一点,点D在AB的延长线上,且角DCB=角A

(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&

如图,点C在以AB为直径的圆O上,CD⊥AB,垂足为P,设AP=a,PB=b

(1),设圆心O,AP=a,PB=b,AB=AP+PB=a+b,连接OC,OD,OC=OD=AB/2=(a+b)/2,OP=AO-AP=(a+b)/2-a=(b-a)/2,直角三角形OPC与直角三角形

如图,AB为圆O的直径,BD、PD切圆O于B、C点,P、A、B共线,求证PO×PB=PC×PD

证明:∵BD、PD是圆O的切线∴∠PCO=∠PBD=90º又∵∠OPC=∠DPB【公共角】∴⊿OPC∽⊿DPB(AA’)∴PO/PD=PC/PB∴PO×PB=PC×PD

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

如图,AB为圆O的直径,CD⊥AB,设角COD=a,则AB/AD*sin²a/2=

根据已知可知∠COD=a,因为∠COD是弧AC所对圆心角,∠B弧AC所对圆周角,所以∠COD=2∠B=a,所以∠B=a/2AB/AD*sin^2*a/2=AB/AD(sina/2)^2...(1)在圆

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=