如图,四边形BCD中,∠DAB=90°,∠ADC=135°,AB=5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:36:41
证明:∵AD//BC∴∠ADC+∠BCD=180°∠CDK=1/2∠ADC∠DCK=1/2∠BCD∴∠CDK+∠DCK=1/2(∠ADC+∠BCD)=1/2×180°=90°∠CKD=180°-(∠C
∵四边形ABCD是平行四边形∴AB//CD,AD//BC,∠BAD=∠BCD∵AE平分∠BAD,CF平分∠BCD∴∠BAE=½BAD,∠DCF=½∠BCD∴∠BAE=∠DCF∵AB
证明:连接CM,AM,∵∠DAB=∠BCD=90°,M为BD中点,∴CM=1/2BD=AM.∴△AMC为等腰三角形.∵N为AC中点,∴MN⊥AC.再问:为什么∵∠DAB=∠BCD=90°,M为BD中点
将B,D,连接,则四边形的面积等于两个三角形的面积之和,也就是AB^2+BC*CD=20,又根据勾股定理,AB^2+AD^2=BD^2=BC^2+CD^2,所以1/2*(BC^2+CD^2)+BC*C
已知:四边形ABCD中,∠B=∠D=90°,AE平分∠DAB,CF平分∠BCD补充说明:E在DC上,F在AB上证:⑴∵AE平分∠DAB,∴∠DAE=1/2*∠DAB∵∠ADE=90°,∴∠AED=90
答:四边形AFCE是平行四边形.证明:∵已知四边形ABCD是平行四边形∴AD∥BC,∠DAB=∠BCD∵AE、CF分别是∠DAB、∠BCD的角平分线∴∠EAD=½∠DAB,∠ECF=
(1)AE⊥BC于E,把△ABE绕点A逆时针方向旋转90°到△ADF的位置,∵∠CDA+∠B=180°,AD=AB,∴∠ADC+∠ADF=180°,即F、D、C在一条直线上,∴四边形AECF是正方形,
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
证明:∵AC平分∠DAB(1) ∴∠DAC=∠BAC &nb
证明:∵四边形ABCD是平行四边形,∴CE∥AF,∠DAB=∠DCB,∵AE、CF分别平分∠DAB、∠BCD,∴∠2=∠3,又∠3=∠CFB,∴∠2=∠CFB,∴AE∥CF,∴四边形AFCE是平行四边
∵四边形ABCD是平行四边形∴AB平行且=CD,∠BAD=∠BCD∴∠ABD=∠CDB∵AECF分别平分∠BAD和∠BCD∴∠BAE=二分之一∠BAD∠DCF=二分之一∠BCD∴∠BAE=∠DCF∴三
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
因为四边形ABCD是平行四边形所以AB=CD∠B=∠D∠BAD=∠BCD又因为∠BAE=1/2∠BAD∠DCF=1/2∠BCD所以∠BAE=∠DCF在△BAE和△DCF中∠B=∠DAB=CD∠BAE=
证法1:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,AB//CD ∴∠BAE=∠DEA∵AE平分∠DAB∴∠BAE=∠DAE∴∠DAE=∠DEA∴AD=DE同理:BF=BC∴DE=
证明:∵四边形ABCD是平行四边形,∴CE∥AF,∠DAB=∠DCB,∵AE、CF分别平分∠DAB、∠BCD,∴∠2=∠3,又∠3=∠CFB,∴∠2=∠CFB,∴AE∥CF,∴四边形AFCE是平行四边
证明:∵四边形ABCD是平行四边形,∴CE∥AF,且∠DAB=∠DCB,(平行四边形的对角相等)∵AE、CF分别平分∠DAB、∠BCD,∴∠EAF=∠ECF,又∠ECF=∠CFB,(两直线平行,内错角
连接BD,根据勾股定理可得BC²+CD²=BD²=AB²+AD²∴BC²+CD²=2AD²∴(BC+CD)²-
在直角三角形ABD中,M是斜边BD的中点,所以,AM=1/2BD在直角三角形BCD中,M是斜边BD的中点,所以,CM=1/2BD于是,AM=CM由于O是AC的中点,也是MN的中点,那么在四边形AMCN
过P依次向AB、BC、CD、AD作垂线,垂足依次为E、F、G、H.∵AP平分∠BAD、PH⊥AH、PE⊥AE,∴PH=PE,又AP=AP,∴Rt△PAH≌Rt△PAE,∴AH=AE.······①∵P