如图,四边形ABCD中,角ABC和角BCD的平分线交于AD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:41:17
如图;连接AC则由勾股定理求得AC=4√2在△BCD中AC=4√2、CD=6、DA=2所以CD²=AC²+DA²∴∠CAD=90°所以:四边形AB
∠DBD′=90°.∠ ACC′=45°+45°=90°⊿ABC为等腰直角三角形.
因为角B=90度,AB=3,BC=4CD=12AD=13.所以S=30
是啊因为AB=CD,AD=CB,还有AC=CA所以△BAC≌△CDB所以∠BAC=∠DCA所以AB∥CD又AB=CD所以四边形ABCD是否是平行四边形(一组对边平行且相等的四边形是平行四边形)
延长CD至E,使得AD=DE,角DAE=角DEA角ADC=角DAE+角DEA=2倍角DEA=2倍角ABC角DEA=角ABC又AB//CD所以角ABC+角BCD=180度即角DEA+角BCD=180度所
是.证明如下:∵BD^2=AB^2+AD^2+2AB*ADcos∠ABD^2=CD^2+BC^2+2CD*BCcos∠C又AB=CD,∠A=∠C∴AD^2+2AB*ADcos∠A=BC^2+2AB*B
∵∠BAD=60°,AB=AD∴△ABD是等边三角形∴BD=AD,∠ADB=60°∵∠BCD=120°∴∠DCE=60°∵CD=CE∴△CDE是等边三角形∴CD=DE,∠CDE=60°∴∠CDE+∠B
解题思路:构造全等三角形进行证明.解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/
∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B
90度则平行两边平行矩形,又临边相等正方形
证明:∵AB=CD,AB//CD∴四边形ABCD是平行四边形∵CB=CD∴四边形ABCD是菱形(邻边相等的平行四边形是菱形)
过点A作AE||CD,交BC于点E∵AE||CD∴∠AEB=∠C∵∠B=∠C∴∠AEB=∠B∴AB=AE∵AB=CD∴AE=CD∴四边形AECD为平行四边形∴AD||EC∴AD||BC∵AB=CD∴四
作AE⊥BC交于点E.作AF⊥CD,交CD的延长线于点F则∠EAF=90°∵∠BAD=90°∴∠DAF=∠BAE∵AB=AD,∠AEB=∠F=90°∴△ABE≌△ADF∴AE=AF,S△ABE=S△A
1连接BD因为AB平行CD所以角DBA=角BDC因为角DBA=角BDC角A=角CBD=BD所以三角形ABD全等于三角形CDB所以AB=CD因为AB平行CDAB=CD所以四边形ABCD是平行四边形2∵A
连接AC∵CD=4,AD=3,∠D=90∴S△ACD=CD×AD/2=4×3/2=6AC²=CD²+AD²=16+9=25∴AC=5∵AB=12,BC=13∴AB
如图过A,B分别做AE,BF垂直CD于E,F有∠AEC=∠BFD=90°∵AB//CD∴AE=BF,又∵AC=BD则△AEC≌△BFD(HL定理)∴EC=FD有EC-EF=FE-EF∴ED=FC,AE
解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有
延长DP到点P'使得AP=AP'连接BP′,AC∵APD=120°,∴∠APP'=60,AP=AP',∴△APP'是等边三角形.∴P'P=AP同理易见△ABC也是等边三角形,∵AB=BC,AP=AP'
因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=