如图,四边形ABCD中,角A=90度,AB =三倍根三

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:06:01
如图,四边形ABCD中,角A=90度,AB =三倍根三
如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,已知四边形ABCD中,角A=角C,角B=角D,求证:四边形ABCD是平行四边形

平行四边形有这么一个判定方法:两组对边分别相等的四边形是平行四边形(百度百科中有)题目已经给出来了,两个对角相等,所以这个四边形为平行四边形

如图,在四棱锥P-ABCD中,四边形ABCD为矩形,三角形PAD为等腰直角三角形,角APD=90°,平面PAD垂直平面A

1证明:平面PAB垂直平面ABCD,且交于直线AD,四边形ABCD为矩形,则CD垂直AD,则直线CD垂直于平面PAD,CD属于平面PDC,所以平面PDC垂直平面PAD.2过P做PE垂直AD于E,因平面

如图,在四边形ABCD中,AB=CD,∠A=∠C,四边形ABCD是平行四边形吗?为什么

是.证明如下:∵BD^2=AB^2+AD^2+2AB*ADcos∠ABD^2=CD^2+BC^2+2CD*BCcos∠C又AB=CD,∠A=∠C∴AD^2+2AB*ADcos∠A=BC^2+2AB*B

如图:已知四边形ABCD中,AB=AD,

∵∠BAD=60°,AB=AD∴△ABD是等边三角形∴BD=AD,∠ADB=60°∵∠BCD=120°∴∠DCE=60°∵CD=CE∴△CDE是等边三角形∴CD=DE,∠CDE=60°∴∠CDE+∠B

如图在四边形abcd,中ab=ad=6,角a=60,角adc=150已知四边形周长30求三角形bdc的面积

再答:结果为24再答:亲,有疑问请追问,满意请采纳或好评,谢谢再答:不客气再问:能再问一个吗再答:说再问:我先把问题发一下你找找再答:嗯再答:没找到再问:现在发了

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图在四边形ABCD中AC平分角DAB

证明:∵AC平分∠DAB(1)      ∴∠DAC=∠BAC      &nb

如图,在四边形ABCD中,AB=AD=8,角A=60度,角D=150度,已知四边形的周长为32,求四边形ABCD的面积

做题目,最重要的就是要找题目所隐藏的条件,请看:由AB=AD=8,角A=60度可知BD=AD=AB由角D=150度又可知角BDC=150-60=90度再来看因为四边形内角和为180度我们就可以得出角C

如图 在四边形ABCD中,AB平行CD 角A等于角C.四边形ABCD是平行四边形吗?为什么?

1连接BD因为AB平行CD所以角DBA=角BDC因为角DBA=角BDC角A=角CBD=BD所以三角形ABD全等于三角形CDB所以AB=CD因为AB平行CDAB=CD所以四边形ABCD是平行四边形2∵A

已知如图,四边形ABCD中,AD+BC=AC=CD=1,角A=60°,求S四边形ABCD 答得详细点,

题目中“角A=60°”,未说明角A是哪个角.图中画得好像是∠DAC,但是,肯定不对,因为如果∠DAC=60°,则△ADC中AC=CD,∠DAC=60°,则其必为等边三角形,这与AD+BC=AC=CD=

已知,如图,在四边形ABCD中,角A=角C=90度,BE平分

解题思路:要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,四边形ABCD内角和为360°,∠A=∠C=90°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠EBC=

如图 在四边形ABCD中,角A=角C=90 AD=BC 求证:四边形ABCD是矩形

因为AD=BC角A=角C=90度,且BD=DB,所以直角三角形ABD全等于直角三角形CDB,所以AB=CD,即对边两两相等,所以ABCD为平行四边形,且有直角,所以ABCD是矩形.

如图,在四边形abcd中,ab=cb,角c=角a,求证ad=cd

证明:作BE⊥CD交CD(当∠C<90º)或DC延长线(当∠C>90º)于E,作BF⊥AD,交AD或DA延长线于F则∠BEC=∠BFA=90º∵∠BCD=∠BAD【原∠C

如图,四边形ABCD中,AB=BC=CD=DA求证四边形ABCD菱形

解法1:因AB=BC=CD=DA所以四边形ABCD是菱形(根据:四条边都相等的四边形是菱形)解法2:因AB=CD,BC=DA所以四边形ABCD是平行四边形又AB=BC所以四边形ABCD是菱形(根据:有

有关中位线的.如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B

每次连接中点后得到的图形面积是原图形面积的一半,答案是S/2^n,S是原图形面积,也就是ab/2,最后应该是ab/2^(n+1)

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB