如图,以△ABC的三条边AB,BC,AC为边分别向形外做等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:50:16
如图,以△ABC的三条边AB,BC,AC为边分别向形外做等边三角形
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,DE是⊙O的切线.

证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴AD是∠BAC的平分线,即∠1=∠2.∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥AC.∵DE是⊙O

如图,在△ABC中,AB=AC,∠C等于2∠A如图,在△ABC中,AB=AC,∠C等于2∠A,以AB为弦的圆O与BC切点

∵AB=AC∴∠ABC=∠C=2∠A∵∠ABC+∠A+∠C=180°∴5∠A=180°∠A=36°∠ABC=∠C=23A=72°∵BC是圆的切线∴∠CBD=∠B=36°∴∠ABD=∠ABC-∠CBD=

如图,在△ABC中,AB=AC,以AB为直径的○o与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.当AB

作DH⊥AB,垂足为H,则∠EDH+∠E=90°,又DE⊥OD,∴∠ODH+∠EDH=90°.∴∠E=∠ODH.∵AD=DC,AC=8,∴AD=4.在Rt△ADB中,BD=3,由三角形面积公式得:AB

如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:

证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,即AD是底边BC上的高又∵AB=AC,∴△ABC是等腰三角形,∴D是BC的中点;(2)∵∠CBE与∠CAD是DE所对的圆周角,∴∠CBE=∠CAD,

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.

(1)证明:连接AP,OP,∵AB=AC,∴∠C=∠B,又∵OP=OB,∠OPB=∠B,∴∠C=∠OPB,∴OP∥AD;又∵PD⊥AC于D,∴∠ADP=90°,∴∠DPO=90°,∵以AB为直径的⊙O

如图,以△ABC的边AB、AC为边作等边三角形ABD和等边三角形ACE,以AD、AE为边作平行四边形ADFE.

①若四边形ADFE为矩形时,∠BAC=360-2x60-90=150度.②若平行四边形ADFE不存在,则D,A,E在一条直线上,∠BAC=180-2x60=60度③若平行四边形ADFE是菱形,则AD=

如图在△ABC中,AB=BC,以AB为斜边做Rt△ADB,∠ADB=90°,E.F分别是AB、AC的中点.若∠ABC=2

4度,连接EF,DF根据直角三角形性质DE=1/2AB=1/2BC,EF为三角形中位线,故EF=1/2BC∠ABD=20°,DEB为等腰三角形综上,DEF为等腰三角形,∠EFA=24∠DAC=70+2

如图,△ABC的三个内角都小于120°,分别以AB、BC、CA为边,向三角形外侧作三个等边三角形ABC、ACE、BCF,

三角形BAE与DAC中,AB=AD,角BAE=DAC,AE=AC所以三角形BAE与DAC全等所以角AEB=ACO因为角CAE+AEB=COE+ACO所以角COE=CAE=60度所以tanCOE=tan

已知,如图,在△ABC中AB=AC,以AB为直径的圆交BC于点D,交AC于点E,

证明:连接AD.∵AB是直径∴∠ADB=90°∴AD⊥BC∴∠BAD=∠CAD∴BD=DE.

如图,以等腰三角形ABC的一腰AB为直径做圆

证明:连接AE∵AB是直径∴∠AEB=90度∵AB=AB∴∠BAE=∠DAE∴弧BE=弧DE∴BE=DE

如图任意三角形ABC分别以AB,AC为腰,以A为顶角的顶点向三角形ABC的两侧作等腰三角形ABM,等腰三角形ACN,且

AB=AM,AN=AC,∵∠ANC=∠ABM,∴∠NAC=∠BAM,【三角形内角和180°】∴∠NAB=∠CAM【两边同减∠BAC】可得△NAB=△CAM(SAS)∴∠NBA=∠CMA若∠ANC=∠A

如图,△ABC中以BC为直径的圆交AB于点D∠ACD=∠ABC,求证CA是切线

第一个问题∵BC为直径,D为圆上一点∴△BCD为直角三角形(直径所对圆周角为直角~这个结论应该是可以直接用的~毕业太久不记得了哈~)∵∠ACD=∠ABC且∠CDB=∠CDA=90°∴∠CAD=∠BCD

如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,以点C为圆心的圆与AB相切.

(1)过C点作CD⊥AB,垂足为D,在Rt△ABC中,AC=AB2−BC2=52−32=4,∴S△ABC=12•AC•BC=12•AB•CD,∴12×4×3=12×5•CD∴CD=125,由题意,AB

如图,在△ABC中,AB=AC,以AB为直径的圆分别交AC,BC于D,E.

如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,

如图,在△ABC中,AB=AC,以AC为直径的半圆O分别交AB、BC于点D、E.

(1)证明:连接AE,∵AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∵AB=AC,∴BE=CE,即点E为BC的中点;(2)∵∠COD=80°,∴∠DAC=12∠COD=40°,∵∠DAC+∠D

如图 以任意△ABC的两边AB,AC为边在△ABC外制作等边三角形ABD和等边三角形ACE,是说明DC=BE

∵三角形ABD和三角形ACE是等边三角形∴AD=ABAC=AE角DAB=角CAE=60°所以角DAC=角BAE在△DAC和△BAE中AD=AB角DAC=角BAEAC=AE△DAC≌△BAE(SAS)∴

如图:在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,求征:BD=CD.

证明:连接AD,如图,∵AB为⊙O的直径,∴∠BDA=90°,∴AD⊥BC.∵AB=AC.∴BD=CD.