如图,以△ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为BC的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:36:12
如图,以△ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为BC的中点
如图,已知△ABC,∠BAC=90°,AB=AC=4,BD是AC边上的中线,分别以AC,AB所在的直线为x轴,y轴建立直

(1)设直线BD的函数关系式为y=kx+b,因为AB=AC=4,BD是AC边上的中线,所以点B、D坐标分别为(0,4)(2,0)代入:y=kx+b,得:y=-2x+4;(2)存在点M,使AM=AC,①

如图 等边三角形ABC D是AB上的动点.以CD为一边,向上做等边三角形EDC,链接AE.说明AE平行BC.

证明:∵△ABC和△CDE都是等边三角形∴BC=AC,DC=EC,∠∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC

如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.

证明:(1)∵△ABC与△EDC是等边三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC.又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,∴∠BCD=∠ACE.∴△ACE≌△

1.以直角△ABC的斜边BC为正方形一边作正方形,如图,O为正方形的中心,已知AB=4,BC=6倍根号下2,求AC的长

(1)由勾股定理可知在直角三角形中AB²+AC²=BC²则有AC²=BC²-AB²即AC=√(BC²-AB²)=√[(6

如图,以圆o的直径BC为一边作等边三角形ABC,AB,AC交圆O于D,E两点,试证明BD,DE,

连接OD、OE∵∠B=∠C=60°OB=OD=OE=OC∴∠DOE=60°∴等边△BOD、△OEC、△ODE∴BO=DE=EC

如图,在Rt三角形ABC中,角C=90°,以AC为一边向外作等边三角形ACD,E为AB的中点.

(1)连接CE∵∠C=90°、AE=BE∴CE=AE又∵DA=DC∴DE是AC的垂直平分线∴DE∥CB(2)AC=√3BC当AC=√3BC时,∠B=60°∵∠ACD=60°∴∠ACD=∠B∴BE∥CD

如图,等边三角形ABC中,D是AB边上的动点,以CD为一边向上作等边三角形EDC,连接AE.证明:AE平行BC

∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ACB=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌ACE∴∠CAE=∠B=60°∴∠CAE=∠ACB∴AE‖BC

如图,等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE‖BC.

证明:∵△ABC和△CDE均为等边三角形∴AC=BC,CD=CE又∠BCD+∠ACD=∠ACE+∠ACD=60°∴∠BCD=∠ACE∴△BCD≌△ACE∴∠CAE=∠B=∠ACB=60°∴AE∥BC再

如图,等边△ABC中,D是AB边上的动点,以CD为一边向上作等边△EDC.连接AE.

可以证明三角形BCD和三角形ACE全等(SAS)然后得到角EAC=角ABC=60度就能证明平行了(内错角定理)

如图,三角形ABD、三角形ACE、三角形BCE是分别以三角形ABC的边AB、AC、BC为一边的等边三角形.求证四边形AD

按图形,ΔACE是等边三角形.证明:∵ΔACE、ΔBCF为等边三角形,∴CB=CF,CA=CE,∠BCF=∠ACE=60°,∴∠BCF+∠ACF=∠ACE+∠ACF,即∠BCA=∠FCE,∴ΔBCA≌

初二三角形证明题.如图,在边长为2的正△ABC中,AD⊥BC于D,若以AD为一边作正△ADE,边ED交AB于F,连接BE

△BDE是等腰三角形证明:∵△ABC和△ADE都是等边三角形∴AB=AC,AE=AD,∠EAD=∠BAC=60°∴∠BAE=∠CAD∴△ABE≌△ACD∴BE=CD∵AD⊥BC∴BD=CD∴BE=BE

如图,D是等边三角形ABC的边AB上的一动点,以CD为一边向上做等边三角形EDC,连接AE,求证:ae平行bc

思路:如果AE平行BC,那么角EAC=角BCA=60度只需证明三角形EAC=三角形DBC由边角边定理,BC=AC,DC=EC,角BCD=角ACE=60度-角ACD,得证.再问:能写出过程吗再答:证明:

(2011•宝应县模拟)如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.

证明:(1)∵△ABC与△EDC是等边三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC.又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,∴∠BCD=∠ACE.∴△ACE≌△

如图,△ABC是等边三角形,D,F分别是AB,BC上的点,且AD=BF,以AF为一边画等边三角形AF为一边画等边三角形A

相等因为△ABC和△AEF是等边三角形所以∠BAC=∠EAF=60°所以∠BAC-∠BAF=∠EAF-∠BAF所以)∠CAF=∠BAE(2)△ADC全等于△BFA△BCD全等于△CAF△FBE全等于△

如图,已知点D E在三角形ABC的边AB AC 上 ,且DE//BC 以DE为一边做平行四边形DEFG 延长BG CF

利用相似比来证明嘛,DE//BC就有AE/AC=DE/BCGF//BC就有HF/HC=GF/BC因为DE=GF所以AE/AC=HF/HC就得到AH//EF

如图,以锐角ΔABC的一边BC为直径作半圆,交AB于D,交AC与E

1连接OD,OE,那么OD=OE=½BC∴OD=OE=DE=BO=OC∴三角形ODE是等边三角形,三角形BOD和COE是等腰三角形∴∠DOE≡60°∠DBO=∠BDO∠C=∠OEC∴∠B

如图:已知△ABC,以AB,BC为一边向外作正方形ABDE,ACGF.连接EF.作AM⊥BC,延长MA交EF于N.求证:

图片:http://hi.baidu.com/%5F%B1%B1%C2%E4%CA%A6%C3%C5%5F/album/item/f7b867c78dcf2ed4d0006016.html如图,延长M

如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、B

辅助线都是延长作高,或直接作高易证S2=S△ABC角EAH+∠PAH=90∠CAB+∠PAH=90∠EAH=∠CAB△EHA全等△ACBEH=CB又FA=AC故S△ACB=S1(等低同高)同理S3=S

如图,在等腰Rt△ABC中,AC=BC.以斜边AB为一边做等边△ABD,使点C,D

因为△ABC为等腰直角三角形,且△ABD为等边三角形所以容易看出CD为∠ADB的角平分线,所以∠ADC=30°又△CDE为等边三角形,所以∠ADE=30°,那么AD为∠CDE的角平分线因为△CDE为等

如图,△ABC是等边三角形,D是AB的中点,以CD为一边向上作等边△ECD,连接AE,求证:△ADE是等腰三角形.

证明:∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,(2分)同理△ECD为等边三角形,可得CD=CE,∠DCE=60°,(3分)∴∠ACB=∠DCE,∴∠ACB-∠ACD=∠DCE-∠ACD