如图,三角形ABC和CDE都是等腰三角形,且角ACB=角DCE=90度,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:07:40
在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CEA=3
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
没图只解第一问因△ABC△CDE为等边△所以△BCD和△ACB中AC=BC,DC=EC又∠ACB=∠ACD=∠DCE=60所以∠BCD=∠ACE=120所以△BCD≌△ACBAE=BD
题目答案是3/4这道题目是以前的中考题目,步骤很麻烦,还是不要做了
没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC
证明:延长BE交AC于F因为ΔABC和ΔEDC是等边三角形所以AC=BC,CE=CD,∠ACB=∠ECD=60°所以∠ACE=BCD所以△ACE≌△BCD(SAS)所以∠CAE=∠CBD根据“三角形任
∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA
∵△ABC、△CDE都是等边△,∴∠ACB=∠ECD=60°,∴∠BCD=60°,∴AC=BC,DC=EC,∠ACD=120°=∠BCE,∴△ACD≌△BCE﹙SAS﹚,∴∠DAC=∠EBC,即∠MA
等边△ABC和等边△DCE∴∠ACB=∠DCE=∠ABC=∠ECD=60°在△ACE与△BCD中∵∠ACB=∠ECD⇒∠ACB-∠ECB=∠ECD-∠ECB⇒A
答:CGF为等腰三角形,CG=CF;证明:三角形BCD全等于△ACE,角BDC=角AEC;△BDG全等于△CEF;CG=CF;△CGF为以GF为底的等腰三角形.再问:BDG不是在一条直线上么。。再答:
(1)∵BC=ACCD=EC∠BCE=∠ACD=120°∴三角形BCE≌三角形ACD得证(2)∵AB‖EC∴EF/FB=EC/AB同理AC/ED=CH/HE又∵AB=ACEC=ED∴EF/FB=EH/
证明:在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CE
证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ABC=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)∴BD=CE
1):证明△ADC与△BCE全等,所以AM=BN2):用相同的方法证明三角形全等,因为有两个等边三角形,所以肯定有相等角为60°,所以可以证明三角形MNC是等边三角形
BC=AC,CE=CD,∠BCE=∠ACD所以得出三角形BCE和三角形ACD全等所以∠BEC=∠ADC又因为CE=CD,∠HCD=∠GCE=60度所以得出三角形HCD和三角形GCE全等因此CG=CH
1)见左图∵ AC=BC,CE=CD,∠ACE=∠BCD=60°∴△ACE≌△BCD∴AE=BD 2)见右图,旋转角度后,∠ACE=∠ACB+∠ECE=∠ECE+60°∠BCD=∠
三角形CMN是等边三角形证明:因为三角形ABC是等边三角形所以AC=BC角ACB=60度因为三角形CDE是等边三角形所以CD=CE角DCE=80度因为角ACD=角ACB+角BCD=60+角BCD角BC
图呢?QQ我加不上,通过消息告诉我问题的答案,我不一定解得出来