如图,三角形ABC内有一点P,过P做各边的平行线,把三角形分成三个三角形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:53:24
平行条件→S1,S2,S3三个三角形相似根据相似加上S1=S2→PD=PE,AF=DF,AI=EI→S△ADE=4S1=4相似加上S2=2S1→HG=√2PD,HG边上的高H=√2PD边上的高hS(B
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
延长BP与AC交与M在△ABM中AB+AM>BP+PM(1)在△CPM中cM+PM>CP(2)(1)+(2)AB+AM+cM+PM>BP+PM+CPAB+AC>PB+PC
因为PA+PB>AB,PB+PC>BC,PA+PC>AC,三式相加得2(PA+PB+PC)>AB+BC+CA,所以PA+PB+PC>1/2(AB+BC+CA)
显然三角形S1,S2,S3和△ABC相似而S1=S2,知DP=PE=BH=GC,AF=FD,AI=IE所以四边形AFPI=2又S3=2S1,BH=DP,PE=GC记S3的高为h,S1的高为g则h=√2
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
斜边是:根号(7^2+24^2)=25,设该距离是x由面积相等得:1/2*7*24=1/2*(7+24+25)*xx=3
证明:连接AP,BP,CP,∵PE⊥AB,PF⊥AC,PD⊥BC,AH⊥BC于H,∴S△ABC=12BC•AH,S△APB=12AB•PE,S△APC=12AC•PF,S△BPC=12BC•PD∵S△
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
是144,挺简单的.利用相似三角形边长比的平方=面积比这个定律,楼主先自行思考下,晚上给你过程!过程:△PIE∽△DMP,得出PE/DP=根号(9/4)=3/2,继续得到,PE/DE=3/5.由△PI
题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D
证明:连接PA,PB,PC则S△ABC=S△PAB+S△PBC+S△PAC∵S△PAB=1/2AB*PES△PBC=1/2BC*PDS△PAC=1/2AC*PFS△ABC=1/2BC*AH∴1/2AB
证:因为PC
因为PC和AP是向量,所以很容易看出来P在AC上,所以三角形PBC的面积是三角形ABC面积的1/3
延长AP交BC于点D(三角形两边之和大于第三边)∴AB+BD>AP+PD①PD+DC>PC②①+②:AB+BD+DC+PD>AP+PC+PD即AB+BD+DC>AP+PC∴AB+BC>AP+PC∵CP
设三个小等边三角形的边长分别为a、b、c则根据平行四边形对边相等,很容易得出△ABC的边长=a+b+c因为边长为m的等边三角形面积=(√3/4)*m^2所以S1=(√3/4)*a^2S2=(√3/4)
三角形内有一点,这点到三边的距离相等即垂直距离不早说.给我头都算大了!明显啊,勾三股四玄五,直角三角形,P到三边的距离就是角平分线的距离,提示道这份上了,自己动手做做比什么都好,
用面积法做,步骤如下:将三角形划分为三个小三角形,分别为△AOB△BOC△AOC,OG OF OE 分别为它们的高.∵S△AOB+S△BOC+S△AOC=S△ABC∴1/
C,分别为中心,距A点正上方位置PA=AB(A,B,C各有一个),与A点在BC的异侧的有PB=BC(各三个)共7个