如图,三角形ABC内接于园O且AB=AC,延长BC至点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:43:27
(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3
连接BE∵AE是直径∴∠ABE=90°∴∠BAE+∠E=90°∵AD⊥BC∴∠C+∠CAD=90°∵∠E=∠C∴∠BAE=∠CAD=30°
连接OA,OC∵AB=5,CD=3∴AD=4∵AB=4√2∴∠ABC=45°∴∠AOC=90°∵OA=OC,AC=5∴OC=(5/2)√2即⊙O的半径为(5/2)√2
(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF
证明:连接BF、CG因为弧BF=弧CG所以弧BG=弧CF,BF=CG所以∠CBF=∠BCG又因为BD=CE所以△BDF≌△CEG(SAS)所以∠BFA=∠CGA所以AB=AC(同圆中,相等的圆周角所对
相等∵AE为⊙O的直径∴∠ABE=90°∴∠BAE=90°-∠E∵AD⊥BC∴∠CAD=90°-∠C∵弧AB=弧AB∴∠E=∠C∴∠BAE=∠GAD
关于如图,三角形ABC内接于圆O
连AD∠CAD=∠CBD=∠ABD∠ADB=90所以有三角形ABD相似于三角形AFDAB/AF=AD/DF=10/7.5=4/3tan∠ABF=tan∠FAD=3/4
连接AO,并延长交⊙O于点E,连接CE,∵AD⊥BC,AC=5,DC=3,∴AD=AC2−DC2=4,∵AB=42,∴在Rt△ABD中,sin∠B=ADAB=22,∴∠B=45°,∵AE是直径,∴∠A
过O作OH⊥BC于H,根据垂径定理得:BH=CH,∵BD=CE,∴BH-BD=CH-CE,即DH=EH,(继续中).再答:延长AD、AE,分别交⊙O于F、G,连BG、FC∵∠1=∠2,BD=CF,∴B
图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠
(1)∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA;(2)∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠D
PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则
①∵∠ABD=∠PAD{弦切角等于同弧上的圆周角},∠ADO=∠OAD{等边对等角};故∠PAO=∠ABD+∠ADO=180º-90º{直径上的圆周角是直角}=90º;∴
连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠
我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π
(1)连接DC,过点D做AC的垂线交AC的延长线于F由于AD是角平分线,DE=DF此外角ABD=角DCF,角DEB=角DFA故而三角形BED全等于三角形CFDBE=CF,从而AC+BE=AC+CF=A
第一问很好证.∵∠BCD=∠BAD,∠BCD=∠ACD∴∠BAD=∠ACD又PD圆的切线∴∠PDA=∠ACD∴∠PDA=∠BAD∴DP∥AB
连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20
连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE