如图,三角形ABC内接与○o,∠b=60度,cd是○o的直径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:42:03
如图,三角形ABC内接与○o,∠b=60度,cd是○o的直径
如图,三角形ABC内接于圆O,CA=CB,CD//AB且与OA的延长线交于点D (1)判断CD...

(1)相切角OCD=角OCB+角BCD=1/2(角ACB)+角ACB)分别根据CA=CB,OC为角ACB的角平分线和内错角相等=90三角形内角和180(2)2倍的根号3

如图,△ABC是圆o的内接三角形AE是圆O的直径 AF是圆O的弦 AF垂直于BC垂足为D BE与CF相等吗?为什么?

证明:∵AE是⊙O的直径∴∠ABE=90°∴∠BAE+∠AEB=90°∵AF⊥BC∴∠ADC=90°∴∠CAF+∠ACB=90°∵∠AEB=∠ACB(同弧所对的圆周角相等)∴∠BAE=∠CAF∴BE=

如图 三角形ABC内接于圆O,AE是圆O的直径 AD垂直BC 于点D.∠BAE与∠CAD相等吗?请说明理由.

相等证明:连接BE∵AE是直径∴∠ABE=90°∵AD⊥BC∴∠ADC=90°∴∠B+∠BAE=∠C+∠CAD∵∠E=∠C∴∠BAE=∠CAD

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

如图O是三角形ABC内的一点,请比较角A与角BOC的大小

延长BO交Ac于E,∠BEC=∠A+∠ABE,∠BOC=∠BEC+∠ACO故∠BOC=∠A+∠ABE+∠ACO可知角BOC大于角A

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

​如图,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任意

射线是角平分线再问:图1,为什么是连接DA再答:因为弧AB和弧AC相等,所以所应角相等

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,三角形是圆O的内接三角形,AD是圆O的直径,AD=8,且角ABC=角CAD.

我们知道,在同圆或等圆中,同弧对应的圆周角相等,再结合已知条件∠CAD=∠ABC故有∠ADC=∠ABC=∠CAD,又AD是直径,所以△CAD是等腰直角三角形.∴∠ADC=∠CAD=45°弧AC长=8π

如图,三角形ABC是圆O的内接三角形,角A是30°,BC是2cm,求圆O的半径

连接OB,OC,所以;∠BOC=2∠A=60°,cos60°=(OB^2+OC^2-BC^2)/2OBOC,即(2r^2-4)/2r^2=1/2,r=2

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直bc 连接de df

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

如图,三角形ABC内接于○O,AB=AC,AO⊥BC于D,

连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20

如图三角形ABC内接与圆O,AD平分∠BAC交⊙O与D,过D作DE‖BC,交AC的延长线与E

1、DE与圆O相切.因AD平分∠BAC,所以∠BAD=∠CAD,所以弧BD=弧CD,连接DO,则DO垂直平分BC,因DE//BC,所以OD垂直DE,所以DE与圆O相切.2、连接BO,交圆O于G,连接A

如图,三角形ABC内接于圆O,点D是弧BC的中点,AE是三角形ABC的高求怔:AD平分角OAE

连接OD,因为D是弧BC的中点,所以OD垂直于BC,又因为AE垂直于BC,所以OD平行于AE,所以∠ODA=∠DAE因为OD=OA,所以∠ODA=∠OAD所以∠OAD=∠DAE所以AD平分角OAE

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B