如图,○O内切于△ABC,分别切边AB,AC于D,E两点,已知∠A=60°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:37:10
如图,○O内切于△ABC,分别切边AB,AC于D,E两点,已知∠A=60°
如图已知△ABC内接于⊙O,AC是⊙O的直径,D是弧AB的中点,过点D做直线BC的垂线,分别交CB CA的延长线于E,F

1.连接OD因为三角形ABC是直角三角形(不知道你学过没.连接OB,OB等于OC等于OA等于1/2AC所以是直角三角形.直角三角形斜边中线等于斜边一半的逆定律)所以AB平行于EF因为D为弧AB中点所以

如图,圆O内切于Rt△ABC,角C=90°,切点分别是D.E.F,如果BC=a,AC=b,AB=c,r是圆O的半径,S是

没有图,我只能自己表字母了:设D在AC,E在BC,F在AB连接OA、OB、OC∴S△AOB=1/2OF×AB=1/2r×cS△BOC=1/2OE×BC=1/2r×aS△AOC=1/2OD×AC=1/2

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,圆O内切于三角形ABC,切点分别为D、E、F,若角B为50度,角C为60度

问题能完整点不再问:再问:第6再答:C再答:不客气给个好评就行

如图,圆O内切于三角形ABC,切点分别为D、E、F,FG垂直于DE于点G,求证:DG/EG=BF/CF

证明:连接DF,EF因为圆O内切于三角形ABC,切点分别为D、E、F所以根据弦切定理有:∠EDF=∠CFE,∠DEF=∠BFD,BF=BD,CF=CE因为FG垂直于DE于点G所以DG=DF*cos∠E

如图,圆O与圆A相交于C,D两点,A,O分别为两圆圆心,三角形ABC内接于圆O,弦CD交AB于G,交AO于F.求证AC的

利用圆周角的概念及相似三角形来证,证法如下.在⊙O中,∵⊙A的半径AC=AD,∴弧AC=弧AD,圆周角∠ACD=∠ADC=∠ABC.在△ACG和△ABC中,∠CAG=∠BAC以及∠ACG=∠ABC,于

如图,在△ABC中,∠C=90°,内切圆O分别切于点D,E,F.

连接OD,半径r=OE=OF=EC=FCFC=AC-AF=b-AFAF=AD=AB-BD=c-BDBD=BE=BC-EC=a-r所以r=b-(c-(a-r))=b-c+a-r从而2r=a+b-c,r=

如图,在△ABC内接于圆O,角BAC的平分线分别交圆O,BC于点D,E,连结BD.试写出图中各队相似三角形.

⊿ABD∽⊿BED⊿AEC∽⊿BED⊿AEC∽⊿ABD证明⊿AEC∽⊿BED证明如下:∵∠DAC与∠DBC为同弦所对的圆周角∴∠DAC=∠DBC同理∠BDA=∠BCA由∠DAC=∠DBC∠BED=∠A

如图,PA,PB,DE分别切○O于ABC,若PA=12求△PDE的周长

△PDE的周长为24因为PA、PB与圆相切所以PB=PA=12所以PA+PB=24又因为DA、DC与圆相切所以DA=DC同理可得EC=EB所以解得周长为24

如图,△ABC内接于⊙O,∠BAC的平分线分别交⊙O,BC于点D,E,连结BD.根据题意,找出图中各对相似三角形,并加以

△DBE∽△DAB;△DBE∽△CAE;△ABD∽△AEC.选择△ABD∽△AEC.∵DA是∠BAC的平分线,∴∠BAD=∠CAE.∵∠D=∠C,∴△ABD∽△AEC.

如图,已知O是△ABC内一点,且OB、OC分别平分∠ABC、∠ACE

∠A=n,那么∠B+∠C=180-n,BO和CO又分别平分两个角,那么∠2+∠4=(∠B+∠C)/2=90-n/2∠BOC=180-∠2-∠4=90+n/2

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

(2008•白下区二模)如图⊙O内切于正△ABC,正△DEF内接于⊙O,则S△DEF:S△ABC等于(  )

连接OA,OB,OM,∵⊙O内切于正△ABC,正△DEF内接于⊙O,∴点D在OA上,点E在OB上,∴△ABC∽△DEF,OM⊥AB,∠AOB=120°,∴∠AOM=12∠AOB=60°,∠AMO=90

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图,已知△ABC内接于圆o,I为△ABC的内心,连接AI并延长分别交BC和圆o于E、D两点,连接BD、CD,求证:

证明:(1)∵内心即角平分线的交点∴∠BAD=∠CAD,∴BD=CD【相等圆周角所对的弦相等】∠ABI=∠EBI∵∠BID=∠BAD+∠ABI∠DBI=∠DBC+∠EBI∠DBC=∠CAD=∠BAD【

如图,⊙O内切于△ABC,切点分别为D,E,F,已知∠B=50°,∠C=60°,连接OE,OF,DE,DF,求∠EDF的

∵∠B=50°,∠C=60°∴∠A=70°∵⊙O内切于△ABC,切点分别为D,E,F,∴∠AEO=∠AFO=90°∴∠EOF=110°∴∠EDF=55°

(2011•河西区模拟)如图,⊙O内切于△ABC,切点分别为D、E、F,若∠B=40°,∠C=60°,则∠EDF的大小为

∵∠B=40°,∠C=60°,∴∠A=80°,∴∠EOF=100°,∴∠EDF=12∠EOF=50°.故选:B.

如图,三角形ABC内接于○O,AB=AC,AO⊥BC于D,

连接AO并延长与圆交与M,连接BM则△ABM相似△ADCAB:DA=AM:ACAB×AC=AM×AD=10×2=20