如图,△acd和△cde都是等边直角三角形,角acd=角bce=90°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:16:06
旋转中心是点c,旋转方向:顺时针,旋转角度:60度.
在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CEA=3
全等.AC//DE∠ACD=∠CDE=∠ABC∠ACB=∠CEDAC=CE角角边定理,△ABC和△CDE全等再问:∠ACB和∠CED不是对应角再答:???怎么不是了?两个角分别相等,其中一对角的对边也
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
没图只解第一问因△ABC△CDE为等边△所以△BCD和△ACB中AC=BC,DC=EC又∠ACB=∠ACD=∠DCE=60所以∠BCD=∠ACE=120所以△BCD≌△ACBAE=BD
∵∠D=∠ACD,∴AC∥DE,∴∠ACB=∠E,在ΔABC与ΔCDE中,∠B=∠D,∠ACB=∠E,AC=CE,∴ΔABC≌ΔCDE(AAS).
△ABC和△CDE都是等边三角形AC=BCDC=EC则,AC-DC=BC-EC即,AD=AC-DC=BC-EC=BE
证明:在等边三角形中∠ACB=∠DCE=60,∴∠ACB+∠ACE=∠DCE+∠ACE即∠BCE=∠ACD在△BCE和△ACD中,BC=AC∠BCE=∠ACDCE=CD∴△BCE≌△ACD(SAS)∴
因为三角形BAC和DCE是等边且相似所以DCB=60所以DCA=BCE=120CE/BC=CD/CA(相似可得)所以三角形DAC和BCE相似(边角边)所以CBE=DAE又BGP=AGC所以ACB=AP
证明:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB+∠ACE=∠ECD+∠ACE.即得∠BCE=∠ACD.在△BCE和△ACD中,BC=AC∠B
(1)证明:∵△ABE和△ACD都是等边三角形,∴AE=AB,AD=AC,∠EAB=∠DAC=60°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠BAD,在△AEC和△ABD中AE=AB∠
证明:在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CE
证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ABC=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)∴BD=CE
证明:在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CE
证明:∵AC//DE∴∠E=∠ACB∴∠ACD=∠D又,∠ACD=∠B∴∠B=∠D∵AC=CE在△ABC和△CDE中∠E=∠ACB∠B=∠DAC=CE∴△ABC全等于△CDE[AAS]
1)见左图∵ AC=BC,CE=CD,∠ACE=∠BCD=60°∴△ACE≌△BCD∴AE=BD 2)见右图,旋转角度后,∠ACE=∠ACB+∠ECE=∠ECE+60°∠BCD=∠
三角形CMN是等边三角形证明:因为三角形ABC是等边三角形所以AC=BC角ACB=60度因为三角形CDE是等边三角形所以CD=CE角DCE=80度因为角ACD=角ACB+角BCD=60+角BCD角BC
证明:∵AC//DE∴∠E=∠ACB∴∠ACD=∠D又,∠ACD=∠B∴∠B=∠D∵AC=CE在△ABC和△CDE中∠E=∠ACB∠B=∠DAC=CE∴△ABC全等于△CDE[AAS]