如图,△ABC全等与△ADE,BC的延长线交DA与点F,交DE与点G,角D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:46:39
△ABC与△ADE全等证明:∠1=∠2,∴∠BAC=∠1+∠DAC=∠2+∠DAC=∠DAE,∵∠2=∠3,∠DFC=∠AFE,∴∠C=∠E,又∵AB=AD,∴△ABC与△ADE全等(A.A.S)
△ABC≌△ADE符号是≌(全等的符号)再问:请用全等符号表示这两个三角形全等,并写出对应角和对应边再答:△ABC≌△ADE【角】∠B=∠ADE∠C=∠E∠BAC=∠PAE【边】AB=APBC=PEA
△AEM≌△ACN,△BMF≌△DNF,△ABN≌△ADM.选择△AEM≌△ACN,理由如下:∵△ADE≌△ABC,∴AE=AC,∠E=∠C,∠EAD=∠CAB,∴∠EAM=∠CAN,∵在△AEM和△
(1)是.理由:∠B=∠C,再证∠AFC=180°-∠C-∠DAE-∠CAD=90°-∠CAD而∠BAG=∠BAC-∠CAD=90°-∠CAD故∠AFC=∠BAG,所以△ABG与△AFC始终相似(2)
如图,△ADE和△ABC有公共的顶点A,∠1=∠2,∠ABC=∠ADE.则△ABD∽△又因为∠1=∠2所以△ABD∽△ACE(两边对应成比例且夹角相等的三角形相似
是否是求证:CF=EF?如果是的话证明:连接AF∵△ABC≌△ADE∴AB=AD,BC=DE∵∠ABC=∠ADE=90,AF=AF∴△ABF≌△ADF(HL)∴BF=DF∵CF=BC-BF,EF=DE
因为全等嘛,所以AD=AB,∠ABD=∠ADB,因为∠DAB=45°,所以∠EBD+∠ADB=135°,除以2,就等于∠ABD,∠ABD=67.5°,所以∠EDB=90-67.5°=22.5°
∠CAD=10°,∠DFB=90°根据外角定理,∠FCA=80°∠FCA与∠ACB互补,故∠ACB=100°已知△ABC全等于△ADE故∠ACB=∠E=100°△ABC全等于△ADE所以∠B=∠D=2
∵AB=AE,AC=AD,BC=CE∴△ABC≌△ADE
(1)△AGB与△AFC相似△ABG与△AFG相似△AFC与△AFG相似(2)成立我证明△ABG与△AFG相似因为∠AGB=∠AGF又因为△ABC与△ADE是全等的等腰直角三角形,所以∠DAE(∠FA
△ABC与△ADE全等.理由:∵∠BAE=∠DAC,∴∠BAE+∠CAE=∠DAC+∠CAE.即∠BAC=∠DAE.∴在△ABC和△ADE中,AB=AD∠BAC=∠DAEAC=AE,∴△ABC≌△AD
证明:∵BD⊥AC∴∠ADB=90°∵CE⊥AB∴∠AEC=90°∴∠ADB=∠AEC∵∠A=∠A∴△ADB∽△AEC∴AD/AE=AB/AC∴AD/AB=AE/AC(比例性质)在△DAE与△BAC中
证明:∵∠DAB=90°,∠CAE=90∴∠DAB+∠BAE=∠CAE+∠BAE即∠DAE=∠CAB∵AB=AD,AC=AE∴三角形ABC全等三角形ADE(SAS)
△ABC≌△ADE证:∵∠BAE=∠DAC∴∠BAE+∠EAC=∠DAC+∠EAC即∠BAC=∠EAD在△ABC和△ADE中{AB=AD∠BAC=∠EADAC=AE∴△ABC≌△ADE(SAS)再问:
因为△ABC全等于△ADE即AB对应AD,BC对应DE,AC对应AE所以∠E=∠ACB,∠D=∠B因为∠DFB=90°,所以∠AFC=90°即∠FAB+∠ABE=90°=∠DAC+∠CAB+∠B=90
根据三角形全等定理,对应角相等,然后根据补角定理,很容易就可以求得每个角的大小了.
ad的度数35再问:为什么再答:角cae等于角dab
△ABC≌△ADE.∵∠CAE=∠BAD,∴∠CAB=∠EAD,在△ABC和△ADE,∵∠B=∠D∠CAB=∠EADAC=AE,∴△ABC≌△ADE(AAS).
∠EAD=∠1+∠EAB,∠BAC=∠2+∠EAB因为∠1=∠2,所以∠EAD=∠BAC又∠E=∠B,AC=AD角角边全等定理△ABC≌△ADE
楼主,证明:∵△ABC≌△ADE∴∠BAC=∠DAE又∵∠BAC=∠1+∠CAD,∠DAE=∠2+∠CAD∴∠1=∠2