如图,△ABC中AC=BC,角BCA=90,D是AB上任意一点,AE⊥CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:30:34
三角形BAC与ADC为相似三角形,BC/AC=AC/DC,可得AC=8
过B作∠B的角平分线交AC于D∠CDB=∠B△CAB∽△CBDCB/CA=CD/CBCB²=CA×CD角平分线分线段成比例定理AD/DC=AB/BCAC/DC=(AB+BC)/BCDC=AC
设角DAE为x则ADE=(180-2x)ADC=(192-2x)=BAD+DBA=30+(180-30-x)/2得x=58再问:������ϸһ����
de=x,Δade与Δabc相似,ae/8=x/4,ae=2x,ce=8-2xy=x*(8-2x)=8x-2x^2(0
过点A做BC的高,交CB的延长线于D,设AD=x,DB=y,则在直角△ADB中,根据勾股定理有x2+y2=102=100(1)同理,在直角△ADC中,x2+(y+9)2=172=289(2)由(1)(
解题思路:等腰三角形解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.p
由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D
解由PB平分角B则AB/BD=AP/PD即6/4=AP/PD即AP/PD=3/2即AP=3AD/5又由ΔABD是直角三角形AB=AC=6,BD=4即AD=√6^2-4^2=√20=2√5.即AP=6√
假设BC边上的高交BC于D设CD为a,则BD为25-a勾股定理AB²-BD²=AD²=AC²-CD²即:26²-(25-a)²=1
由余弦定理cosB=(AB^2+BC^2-AC^2)/2AB*BC=2cosC^2-1COSC=(BC^2+AC^2-AB^2)/2AC*BC化简后可以得到
∵AB=AC∴∠B=∠C∵AD是角EAC的平分线∴∠1=∠2∵∠1+∠2=∠B+∠C∴∠2=∠C∴AD‖BC
由AD垂直于BC得:AB平方-BD平方=AC平方-DC平方,可得(AB+BD)(AB-BD)=(AC+DC)(AC-DC)又已知AB+DC=AC+DB则AB-DB=AC-DC,可得AB+BD=AC+D
不是.△ABC中,AB=BC=AC,∠ACB=60°,说明ABC位置是定的.BD=AD,说明D在AB中垂线上,位置不确定.BP=AB,说明P在以B为圆心,AB为半径的圆上,位置不确定.BPD中有两点位
(1)作AE⊥BC交BC于点E,∵AB=AC,∴BE=EC=3,在Rt△AEC中,AE=92−32=62,∴Sin∠C=AEAC=629=223;(2)在Rt△BDC中,Sin∠C=BDBC,即BD6
过点A做AD⊥BD,交AB延长线D设BD为X ∵CD⊥BD BC=9 BD=X∴CD=根号9²-X²在RT△A
设AD=X,DB=Y在直角三角形ADB中,由勾股定理,得AB^2=AD^2+BD^2即10^2=X^2+Y^2①在直角三角形ACD中,由勾股定理,得AC^2=AD^2+CD^2即17^2=X^2+(9
用海伦公式边长分别为a、b、c,面积S公式S=√[p(p-a)(p-b)(p-c)]p为半周长:p=(a+b+c)/2
过点A作AD⊥BC于D∵AB=AC=13,AD⊥BC∴BD=CD=BC/2=5∴AD=√(AB²-BD²)=√(169-25)=12∴S△ABC=BC×AD/2=10×12/2=6
解答提示:如图,设外接圆圆心为O,连接AO并延长交BC于D,连接OB因为三角形ABC是等腰三角形所以AD⊥BC,BD=CD=6根据勾股定理得AD=8设OA=OB=R,则OD=8-R由勾股定理得:BD^