如图,∠A=50°点O是∠ABC和∠ACB的平分线的交点,求∠BOC的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:48:46
如图,∠A=50°点O是∠ABC和∠ACB的平分线的交点,求∠BOC的度数
如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,

∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,DE

设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°

如图,AB与CD相交于点O,O是AB的中点,∠A=∠B,ΔAOC与ΔBOD全等吗?为什么?

全等,∠A=∠B,OA=OB,∠AOC=∠BOD(对顶角相等),ASA,所以全等

如图,AB是圆O的一条弦,点C是AB上一点,OC⊥OA,且OC=BC,求∠A的度数

连接OB由OB=OAOC=BC得到∠BOC=∠B=∠A∠ACO=∠BOC+∠B=2∠AOC⊥OA∠ACO+∠A=3∠A=90∠A=30

如图,AB、CD是⊙O的两条弦,延长AB、CD交于点P,连接AD、BC交于点E.∠P=30°,∠ABC=50°,求∠A的

∵∠ABC为△BCP的外角(4分)∴∠ABC=∠P+∠C∵∠ABC=50°,∠P=30°∴∠C=20°(8分)由圆周角定理,得∠A=∠C,∴∠A=20°(10分)

如图,在等腰Rt△ABC中,∠A=90°,AC=9,点O在AC上,且AO=2,点P是AB上一动点,连接OP将线段OP绕O

过点D作DE⊥AC于E,则∠DOE+∠AOP=90°,∠DOE+∠ODE=90°,∴∠ODE=∠AOP,又∵OD=OP,∠DEO=∠OAP=90°,∴△DEO≌△OAP,∴DE=OA=CE=2,∴AP

如图,AB是圆O的直径,点C在圆O上,∠BOC=108°,过点C作直线CD分别交直线AB和圆O于点D、E,连接OE,

(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠

如图,AB是圆O的直径,点D在圆O上,∠DAB=45°,BC平行AD,CD平行AB

(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)分析:(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)

如图,CD是⊙O的直径,∠EOD=72度,AE交⊙O于点B,AB=OC,求∠A的度数.

/>连EC,∵∠EOD是等腰三角形EOC(OE=OC)的一个外角∴∠ECO=(1/2)×∠EOD=(1/2)×72°=36°(三角形的一个外角等于与它不相邻的两个内角的和)∴∠A+∠AEC=∠ECO=

如图,在菱形ABCD中,∠A=60°,AB=4,O是对角线BD的中点,过O点作OE丄AB,垂足为E.

(1)在菱形ABCD中,∵AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)∵O是对角线BD的中点,∴OB=12BD=2,∵∠ABD=60°,∴BE=OBcos60°=2×1

如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于C,若∠A=25°,则∠D=______°.

如右图所示,连接BC,∵AB是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°-25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA-∠BCD=65°-25°=40°

如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C.∠DAB=∠B=30°.

(1)直线BD与⊙O相切.理由如下:如图,连接OD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB-∠ODA=120°-30°=90°

如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙

(1)连结DO,则A0=DO,所以∠A=∠ADO.因为∠A+∠CDB=90°,所以∠ADO+∠CDB=90°所以∠ODB=90°,即直线BD与⊙O相切.(2)连结DE,由题易得△ADE与△ACB相似,

如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于

连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠

如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F

(1)证明:连接AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙

如图,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,且∠A=∠PCB.

(1)连接OC.    ∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°. ∵OA=OC,∴∠A=∠ACO,∵∠A=∠PCB,∴∠

如图,AB是⊙O的直径,C为AB延长线上的一点,CD交⊙O于点D,且∠A=∠C=30°.

(1)证明:连接OD.         ∵AB是直径,∴∠ADB=90°,∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠BOD=60°,又∵∠C=30°,∴∠ODC=90°,即OD⊥

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60