如图,∠A=50°点O是∠ABC和∠ACB的平分线的交点,求∠BOC的度数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:48:46
∵AC是⊙O的直径,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP为切线,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB为正三角形,∴周长=33.
设∠CDB为X,∠CEO为YX+2(180-Y)=180Y=X+(180-Y)解这两个方程组得y=∠CEO=138°X=∠CDB=96°
连接BO则角BOA=角A角PBE=2角A∠EOD=5倍角A=70度所以角A=14度
全等,∠A=∠B,OA=OB,∠AOC=∠BOD(对顶角相等),ASA,所以全等
连接OB由OB=OAOC=BC得到∠BOC=∠B=∠A∠ACO=∠BOC+∠B=2∠AOC⊥OA∠ACO+∠A=3∠A=90∠A=30
∵∠ABC为△BCP的外角(4分)∴∠ABC=∠P+∠C∵∠ABC=50°,∠P=30°∴∠C=20°(8分)由圆周角定理,得∠A=∠C,∴∠A=20°(10分)
过点D作DE⊥AC于E,则∠DOE+∠AOP=90°,∠DOE+∠ODE=90°,∴∠ODE=∠AOP,又∵OD=OP,∠DEO=∠OAP=90°,∴△DEO≌△OAP,∴DE=OA=CE=2,∴AP
(1)DE=AB/2=OE,则:∠EDO=∠EOD=(1/2)∠OEC;OE=OC,则:∠OCE=∠OEC=∠EDO+∠EOD=2∠CDB.∵∠BOC=∠OCE+∠CDB=3∠CDB.即108°=3∠
(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)分析:(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)
/>连EC,∵∠EOD是等腰三角形EOC(OE=OC)的一个外角∴∠ECO=(1/2)×∠EOD=(1/2)×72°=36°(三角形的一个外角等于与它不相邻的两个内角的和)∴∠A+∠AEC=∠ECO=
(1)在菱形ABCD中,∵AB=AD,∠A=60°,∴△ABD为等边三角形,∴∠ABD=60°;(2)∵O是对角线BD的中点,∴OB=12BD=2,∵∠ABD=60°,∴BE=OBcos60°=2×1
如右图所示,连接BC,∵AB是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°-25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA-∠BCD=65°-25°=40°
(1)直线BD与⊙O相切.理由如下:如图,连接OD,∵∠DAB=∠B=30°,∴∠ADB=120°,∵OA=OD,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB-∠ODA=120°-30°=90°
(1)连结DO,则A0=DO,所以∠A=∠ADO.因为∠A+∠CDB=90°,所以∠ADO+∠CDB=90°所以∠ODB=90°,即直线BD与⊙O相切.(2)连结DE,由题易得△ADE与△ACB相似,
连接BC∵CE是圆切线∴∠ECB=∠CDB=20°(弦切角=所夹弧上的圆周角)∵AB是直径∴∠ACD=90°(半圆上圆周角是直角)∵∠CDB=∠CAB=20°(同弧上圆周角相等)∴∠CBA=90°-∠
(1)证明:连接AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙
(1)连接OC. ∵AB是⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°. ∵OA=OC,∴∠A=∠ACO,∵∠A=∠PCB,∴∠
(1)证明:连接OD. ∵AB是直径,∴∠ADB=90°,∵∠A=30°,∴∠ABD=60°,∴△OBD是等边三角形,∴∠BOD=60°,又∵∠C=30°,∴∠ODC=90°,即OD⊥
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60