如图,p是角adc内一点,请判断角a和角bpc的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:01:32
1、∠P+∠1+∠2=180(1)∠A+2∠1+2∠2=180(2)2(1)-(2)得2∠P-∠A=180即∠P=90°+1/2∠A成立2、∠P+∠1+∠2=180(1)∠A+3∠1+3∠2=180(
角A+∠ABC+∠ACB=180∠P+∠PBC+∠PCB=180又∠ABC>∠PBC∠ACB>∠PCB所以∠A<∠P
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∠OCD=60°,∴CO=CD.∴△COD是等边三角形;(2)若△AOD是等腰三角形,所以分三种情况:①∠AOD=
延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+DE=AC)
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
PA+PB>ABPA+PC>AcPB+PC>BC2PA+2PB+2PC>AB+AC+BC、PA+PB+PC>0.5(AB+BC+AC)
连接AP延长交BC于D你知道 角BPE=角BAP+角ABP 角CPE=角PAC+角ACP &nbs
角BPC=90°+1/2角A需要证明要加多一个条件(bp和pc是角平分线)证明:角BPC=180°-1/2(角ABC-角ACB)=180°-1/2(180°-角A)=180°-90°+1/2角A=90
连接B,D两点,交AC于点E.然后根据一个角的外角等于其他两个内角的和求证即可再问:过程
证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC
AB+AC>PB+PC理由:因为:延长BP交AC于D.AB+AD>BD=PB+PD因为:PD+CD>PC两式相加所以:AB+AD+PD+CD>PB+PD+PC销去PD所以:AB+(AD+CD)>PB+
延长BP交AC于D.因角BPC>角BDC>角A
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
证明:将△ADB顺时针旋转到△AD′C的位置,使AB和AC重合,D变为D′连接DD′,∴AD=AD′,BD=CD′,∴∠AD′D=∠ADD′,∵∠ADB=∠ADC,∴∠AD′C=∠ADC,∴∠CD′D
(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+
如图,连接DP,∵△ABC是正三角形,∴∠BAC=60°,∵△ADC≌△APB,∴∠DAC=∠PAB,DA=PA,DC=PB,∵∠PAC+∠BAP=60°,∴∠PAC+∠CAD=60°,∴△DAP是正
∠APD=150度,因为△BCP是等边三角形,所以BP=BC=PC,∠PBC=∠PCB=∠BPC=60度,又因正方形ABCD,所以∠ABC=∠BCD=90度,AB=BC=CD,所以∠ABP=∠DCP=
证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.
(1)将三角形BOC绕点C按顺时针方向旋转60度,可知:OC=OD,∠OCD=60°(从OC旋转到OD),所以三角形COD是等边三角形(2)三角形COD是等边三角形,所以∠ODC=60°,当∠ADC=
作法:1、连续OP; 2、以O为圆心,OP为半径作弧交OA于点C; 3、分别以P、C为圆心,OP为半径作弧相交于点D; 4、过点P、D作直线MN,则MN为所求.证明:(略)