如图,M是平行四边形的AB边的中点,CM与BD相交于点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:21:02
1.设三角形DME的面积是x,则三角形CEB面积也是x.S△MEB=1/4-x;S△DEC=1/2-x根据S△DME/S△MEB=S△DEC/S△CEB列出关于x的方程求出x=1/6,所以S阴影=1/
在平行四边形ABCD中CD=AB,CD∥AB∵M,N分别是AB,CD的中点∴CN=AM∵CD∥AB∴∠NCE=∠MAF∵AE=CF∴AE+EF=CF+EF即AF=CE∴⊿AMF≌⊿CNE﹙SAS﹚∴M
因为四边形ABCD为平行四边形所以AD=BC,AD平行于BC又因为AE=CF所以ED=BF因为M\N为ED、FB的中点所以EM=FN且EM平行于FN所以四边形ENFM为四边形
(1),因为三角形CDE相似于三角形BME且CD:BM=2:1所以S△CDE:S△BME=(2:1)^2=4:1因为两个三角形相似且对应边之比为2:1,故两三角形高之比为2:1(过E点做CD和BM的垂
虽然没图我自己画了一个以AB为下底的平行四边形过E做EF垂直于AB于F,反向延长交CD与P,由AB‖CD不难发现△EMB∽△ECD而且MB:CD=1:2即△EMB与△ECD的相似比为1:2则他们的高之
∵⊿BEM∽⊿CDM(两角对应相等,两三角形相似)∴BM:CM=BE:CD=1:2S⊿BOD:S⊿COD=1:2S⊿COD=2S⊿BCD/3S⊿BCD=S平行四边形ABCD/2S⊿COD=S平行四边形
CDE-BME相似,相似比2:1,面积比4:1BME的高是平行四边形高的1/3,面积是1/2*1/2*1/3=1/12
∵⊿BEM∽⊿CDM(AA)∴BM:CM=BE:CD=1:2S⊿BOD:S⊿COD=1:2S⊿COD=2S⊿BCD/3S⊿BCD=S平行四边形ABCD/2S⊿COD=S平行四边形ABCD/3S⊿BEM
∵BC=2AB,AM=DM∴AB=AM=DM=DC∴∠ABM=∠AMB,∠DMC=∠DCM又∵AD∥BC∴∠AMB=∠MBC,∠DMC=∠MCB∵AB∥CD∴∠ABC+∠DCB=180∴∠AMB+∠M
证AE向量=FC向量(可以根据向量加法来做,AE=AD+DE=BC+FB=FC),所以,
如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点(1)求证:MN//平面PAD;(2)若MN=PC=4,PA=4根号下3,求异面直线PA与MN所成的角的大小.(1)取PD的
点M为AB的中点,则BM=AB/2=DC/2.∵BM∥CD.∴ME/CE=BM/DC=(DC/2)/DC=1/2,则ME/MC=1/3,故S⊿BME=(1/3)S⊿BMC.(同高的三角形面积比等于底之
思路是证明平行四边形中有一个内角为90°,要证明有一个内角为90°,就要证明△ABM≌△DCM下面就来证明:因为四边形ABCD是平行四边形所以AB=CD又M是AD中点所以AM=DM又因为MB=MC所以
证明:①延长CM交BA延长线于F∵四边形ABCD是平行四边形∴AD=BC,AB=CD,AB//CD∴∠F=∠DCM,∠FAM=∠D又∵M是AD的中点,即AM=DM∴△AFM≌△DCM(AAS)∴FM=
因为四边形ABCD是平行四边形所以AB//CD,AB=CD所以△MEB∽△CED所以BM/CD=ME/CE因为M是AB的中点所以MB=AB/2=CD/2所以BM/CD=ME/CE=1/2所以S△MEB
(求证的应该是∠DAN=∠BCM!)证明:∵点M,N分别是边AB,DC的中点∴AM=AB/2,CN=CD/2∵在平行四边形ABCD中,有:AB//CD且AB=CD∴AM=CN且AM//CN∴四边形AN
思路:观察图形,若要证在同一条直线上的三条线段相等,联想相关的定理,显然是需要构成“平行线等分线段定理的”基本图形,由于M.N分别是AB、CD的中点,因此有AM=MB,DN=NC,若有AN‖MC,则可
证明△BAD中M,N分别为AB,BD中点∴MN为△BAD中位线∴MN∥AD且MN=½AD△CAD中Q,P分别为AC,CD中点∴PQ为△CAD中位线∴PQ∥AD且PQ=½AD∵MN∥
因为平行四边形ABCD,所以AB平行CD,因为M、N分别为AB、CD中点所以AM=CN,又因为AB平行CD,所以AM平行CN所以平行四边形AMCN