如图,E是△ABC内任意一点,比较BE CE与AB AC的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:51:33
如图,E是△ABC内任意一点,比较BE CE与AB AC的大小
如图,点P是△ABC内任意一点,PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D.E.F,

证明:因为AP²=AD²+DP²=AF²+FP²BP²=BE²+EP²=BD²+DP²CP²

如图 已知D是△ABC内任意一点 连接BD,CD 求证AB+AC>DB+DC

延长BD交AC于点E在三角形ABE中AB+AE>BD+DE在三角形DEC中DE+EC>DCAB+AE+DE+EC>BD+DE+DC即AB+AC>BD+DC

如图,点E是三角形ABC内任意一点,试比较BE+CE与AB+AC的大小

在△ABF中,AB+AF>BE+EF ;在△EFC中,EF+FC>EC 将两个不等式左右各自相加得:AB+AF+EF+FC>BE+EF+EC 同时两边去

如图,已知D是△ABC内任意一点,连结BD、DC,试说明AB+AC>DB+DC.

1)延长BD交AC于E在△ABE中∵AB+AE>BD+DE∴AB+AE+EC>BD+DE+EC而DE+EC﹥CD∴BD+DE+EC﹥BD+CD即AB+AC﹥BD+DE+EC﹥BD+CD

如图,P是△ABC内任意一点,求证:PA+PB+PC> 0.5(AB+BC+CA).

∵PA+PB>AB,PB+PC>BC,PA+PC>CA∴PA+PB+PB+PC+PA+PC>AB+BC+CA∴PA+PB+PC>0.5(AB+BC+CA).

如图,已知E为△ABC内任意一点,求证;BE+CE

延长be,与ac相交于fab+af>bfbf=be+ef即ab+af>be+efef+cf>ce相加ab+af+ef+cf>ce+be+efab+af+cf>ce+beab+ac>be+ce

如图:P是ΔABC内任意一点,求证:AB+AC〉PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC

如图,已知P是三角形ABC内任意一点,求证:角BPC>角A

证明:∠BPC=180°-(∠PBC+∠PCB);∠A=180°-(∠ABC+∠ACB);∵∠PBC+∠PCB180°-(∠ABC+∠ACB);即∠BPC>∠A.

如图 已知O是 三角形ABC 内任意一点 求证 OB+OC

有图吗?发一个,再问:忘了..再答:证明ABBC>OBOC证:延长BO交AC于D因为ABAD>BD=OBOD,即ABAD>OBOD,又因为ODDC>OC上述两不等式两边相加得:所以ABADODDC>O

如图,点E为上底面内任意一点,

小哈~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

如图,△ABC是等边三角形,P为三角形内任意一点,边长为1.

(1)证明:在三角形PAB中,PA+PB>AB,同理,PB+PC>BC,PA+PC>AC将三个不等式左右分别相加,得2(PA+PB+PC)>AB+BC+AC因为AB=BC=AC=1所以2(PA+PB+

如图,在△ABC中,P是△ABC内任意一点,证明∠BPC>∠A

延长BP与AC交于D点,∠BPC是△PDC外角所以∠BPC>∠BDC而∠BDC是△ABP的外角,所以∠BDC>∠A故∠BPC>∠A.

如图,△ABC是边长为4CM的三角形,P是△ABC内的任意一点,过点P作EF‖AB分别交AC,BC于点E,F,作GH‖B

应该是边长为4CM的“正”三角形吧∵EF‖AB,GH‖BC,MN‖AC∴四边形AMPE,BGPF,CNPH都是平行四边形AM=EP,AE=MP,BG=FP,BF=GP,CN=HP,CH=NP且△ABC

如图,P是三角形ABC内的任意一点.求证:PB+PC大于AB+AC.

题目错了!延长BP交AC于点E,在△ABE中,AB+AE>BE在△PEC中,PE+EC>PC∴AB+AE+PE+EC>BE+PC∴AB+AE+PE+EC>BP+PE+PC(注BE=BP+PE,AE+D

如图,等腰直角三角形ABC中,∠ACB=90°,AC=BC,M是△ABC内任意一点,连结MC并延长到E,使得CE=CM,

1、连接CF,∵ΔABC是等腰直角三角形,F这AB的中点,∴AF⊥AB,∵MADB是平行四边形,∴MF=MD,∵C、F分别为MD、ME的中点,∴CF∥DE,∴DE⊥AB.2、依然成立.

如图,点P是△ABC内任意一点,试说明PB+PC

证明:延长BP交AC于点E,则在ΔABE中有:AB+AE>BE即AB+AE>PB+PE又在ΔPEC中有:EP+EC>PC∴(AB+AE)+(EP+EC)>(PB+PE)+PC即AB+AC>PB+PC所

如图,D是△ABC内任意一点,求证AB+AC>DB+DC

过D作DE‖AC交AB于E,过D作DF‖AB交AC于F,所以四边形AEDF是平行四边形.有AE=DF,AF=DE,△BDE中,BE+DE>BD,△CDF中,CF+DF>CD,∴BE+DE+CF+DF>

如图,P是△ABC内任意一点,试说明 2(PA+PB+PC)>AB+AC+BC

因为:①PA+PB﹥AB(两边之和大于第三边)②PA+PC﹥AC(两边之和大于第三边)③PB+PC﹥BC(两边之和大于第三边)三式相加得2(PA+PB+PC)﹥AB+BC+AC

如图,△ABC是等边三角形,O为△ABC内的任意一点,OE‖AB,OF‖AC,分别交BC于点E、F.三角形OEF是等边三

是,因为△ABC是等边三角形,所以∠B=∠C=60°,因为OE‖AB,OF‖AC,所以∠OEF=∠B=60°,∠OFE=∠C=60°,所以△OEF是等边三角形