如图,CD是圆O的直径,AB两点在圆O上,且AC平行于OB,角ADB等于33
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:00:06
AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠
选A,理由如下:将AD,DB,BC,CA连起来,得到一个对角线=2的正方形,由割补法:将外面8个弓形图形放进去,阴影面积S=大正方形面积=4²÷2=8.
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
证明:设AB、CD交于点P,连接OP.假设AB与CD能互相平分,则CP=DP,AP=BP.∵AB、CD是⊙O内非直径的两弦,∴OP⊥AB,OP⊥CD.这与“过一点有且只有一条直线与已知直线垂直”相矛盾
∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
∠ADF=90度∠DAB=45度∠BAF=15度∠DAF=60度故∠DFA=30度AD=根号下2AF=2根号下2DF=根号下6所以面积为根号下3
连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E
连接OEO为圆心CE//AB==>∠BOC=∠OCE,∠AOE=∠OEC(两平行线之间内错角相等)△COE为等腰三角形==>∠OCE=∠OEC==>∠BOC=∠AOE∴BC弧=AE弧(同一圆内圆心角相
提示,连接AC,过C作CG垂直AF,垂足为G令CF=a,CE=x,A0=rCG=FG=1/2根号2a,AG=3/2根号2aAC=根号5ar=根号5a/2用△AOE,△CGE相似AE/CE=AO/CGA
:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
解题思路:过B作弦BE,使BE=CD,连接AE,说明△AEB是直角三角形,由斜边大于直角边得出结论解题过程:证明:过B作弦BE,使BE=CD,连接AE∵AB是⊙O直径∴∠AEB=90°∵Rt△AEB中
图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=