如图,BE, CF分别是∠ABC的两条高且相交于点D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:18:59
证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,即∠ABC=∠BCD,∴AB∥CD.
(1)已知:cf,be为ab,ac的高则cf⊥ab,de⊥ac在△afc与△aeb中∵∠cfa∶∠bea=90°,∠a=∠a∴△afc相似于△aeb∴af∶ae=ab∶ac在△afe与△abc中∵∠a
三角形BEC和三角形CBF是直角三角形BC=BCBE=CF所以全等
∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°∵∠A=∠A∴△ABE∽△ACF∴AE/AF=AB/AC∴AE/AB=AF/AC∵∠A=∠A∴△AEF∽△ABC
过B点作BG平行AC交FD延长线于G,连接GF因BG平行AC,则BD/CD=BG/CF=DG/DF又因D是BC中点即BD=DC,则BG=CF,DG=DF因DE、DF分别平分∠ADB,∠ADC,∠ADB
(1)证明:∵∠BDC=∠BEC+∠ACF∴∠BDC=90°+∠ACF①又∵CF┴AB∴∠A+∠ACF=90°②∴①式-②式,∠BDC-(∠A+∠ACF)=90°+∠ACF-90°∴解得,∠BDC=∠
(1)∵∠A=∠A,∠AFC=∠AEB=90°∴△AFC∽△AEF∴AF比AE=AB比AC∴AF比AB=AE比AC∴三角形abc相似于三角形aef(2)∵∠AEB=90°,∠A=60°∴AE比AB=1
∵BE平分∠ABC,CF平分∠ACB∴∠ABE=∠CBE,∠BCF=∠DCF∵平行四边形ABCD∴AD=BC=5,CD=AB=4,AD∥BC∴∠AEB=∠CBE,∠DFC=∠BCF∴∠AEB=∠ABE
一、∠ABC+∠BCD=1801/2(∠ABC+∠BCD)=90根据三角形内角和=180,得∠BOC=90二、为∠ADC做条角平分线,剩下的你自己想
(1)证明:如图,连接FD,∵AD、BE、CF分别是三边上的中线,∴CD=12BC=22,CE=12AC=12,FD=12AC=12,由勾股定理得,AD2=AC2+CD2=12+(22)2=32,CF
p是becf的交点吧是△bpc的外角=½(∠c+∠b)=½(180°—∠a)=90°--½∠A然后∠bpc=180°-∠bpf=90°+½∠A根据题目中的关系来
∵四边形ABCD是平行四边形且BE平分∠ABC,CF平分∠BCD∴∠ABE=∠CBE=∠AEB;∠DCF=∠BCF=∠DFC∴AB=AE;CD=DF;AB=CD而BC=AD=AE+DF-EF=2AB-
证明:连接EF.∵E、F分别是AC、AB的中点,∴EF‖BC,EF=1/2BC.(1)是(2)平行四边形
(1)证明:∵四边形ABCD是平行四边形∴AB∥CD∴∠ABC+∠BCD=180°(1分)又∵BE,CF分别是∠ABC,∠BCD的平分线∴∠EBC+∠FCB=90°∴∠BOC=90°故BE⊥CF(3分
因为:四边形abcd为平行四边形所以:∠ABC+∠BCD=180°因为:BE平分∠ABCCF平分∠BCF所以:∠EBC+∠BCF=1/2∠ABC+1/2∠BCD=90°因为:GBC为三角形,由三角形内
相等因为AD是△ABC的中线所以D是BC的中点所以BD=CD因为BE‖CF所以∠EBD=∠FCD(两直线平行,内错角相等)在△BDE和△CDF中,BD=CD,∠EBD=∠FCD,∠BDE=∠CDF(对
用内心来证明如图作ML‖BCMN‖ACLN‖AB因为BE⊥AC所以BE⊥MN同理有FC⊥LNAD⊥ML可知四边形ABCN为平行四边形又∠BCN=∠ABC∠MAB=∠ABC则∠BCN=∠MAB则△MAB
证明△AGC和△ADB全等.(1)△CFA和△ABE有2个公共角(∠BAC和∠CAB,∠AFC和∠AEB),所以∠ABE=∠ACG.又因为BD=AC,CG=AB.△AGC和△ADB全等(SAS).所以
∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明