如图,ad.ae分别为△ABC的边BC上的中线和高,且ab=5cm,AC=3cm

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:43:39
如图,ad.ae分别为△ABC的边BC上的中线和高,且ab=5cm,AC=3cm
如图,△ABC是等边三角形,点D,E分别是BC.AC上的点,且AE=CD,AD与BE交于点为F

易证△ABE≌△CAD,从而∠AEB=∠CDA,于是∠CDF+∠CEF=∠AEB+∠CEF=180°∴D、C、E、F四点共圆∴∠BFD=∠C又△ABC是等边三角形,∠C=60°∴∠BFD=60°再问:

如图,△ABC是等边三角形,点D,E分别是BC.AC上的点,且AE=CD,AD与BE交于点为F.

证明:(1)∵已知△ABC是等边三角形,AE=CD∴AB=AC,∠BAC=∠C=60°∴在△ABE与△CAD中,有AB=AC,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(2)由(1)中△ABE≌

如图1,已知△ABC,分别以AB、AC 为边作△ABD和△ACE,且AD =AB,AC=AE ,∠DAB

(1)∵∠DAC=∠DAB+∠BAC∠BAE=∠CAE+∠BAC又∵∠DAB=∠CAE∴∠DAC=∠BAE∵AD=AB,AC=AE所以:△DAC≌△BAE(SAS)(2)由于△DAC≌△BAE有BE=

如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.

证明:连接BE,记BE中点为F,连接FN、FM,∵FN为△EAB的中位线,∴FN=12AB,FN∥AB,∵FM为△BCE的中位线,∴FM=12CE,FM∥CE,∵CE=AB,∴FN=FM,∴∠3=∠4

如图,已知△ABC内接于圆O,AE为直径,AD为BC上的高.求证:AB·AC=AE·AD

因为角aeb=角acb因为ae直径AD为BC上的高所以角aeb=角aec=角acb所以三角形abe和adc相似所以AB/AE=AD/AC得AB·AC=AE·AD

如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M,N分别为BC,AE的中点,求证MN‖AD.

第一个问题:过B作BG∥MN交CA的延长线于G.∵BM=CM,BG∥MN,∴CN=GN,∴AG+AN=CE+EN,而AN=EN,∴AG=CE,又AB=CE,∴AG=AB,∴∠G=∠ABG.由三角形外角

如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.

【按你提供的辅助线作法证明】证明:连接AM并延长到F,使MF=AM,连接EF、FC.∵M是BC的中点∴BM=CM又∵∠AMB=∠FMC(对顶角相等)    AM

初二数学.如图,△ABC中,AD,AE分别是△ABC中BC的高、中线,已知AD=8,CE=7.

∵CE=7AD=8∴根据三角形面积公式S△AEC=AD×CE/2∴S△AEC=8×7÷2=28又∵点E为BC中点,∴BE=CE=7△ABE的高也是AD∴S△ABE=BE×AD/2S△ABE=7×8÷2

如图,在等边△ABC中,DE分别为BC,AC上一点,且AE=CD,BE交AD于P,求角BPD的度数

∵等边三角形ABC∴AB=BC=AC∠ABC=∠BCA=60°∵CD=AE∴BD=CE在三角形ABD和三角形BCE中AB=BC∠ABD=∠BCEBD=CE∴△ABD≌△BCE∴∠BAD=∠CBE∵∠C

如图已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F

∵△ABE全等于△CAD∴∠ABE等于∠DAC∵△ABC是等边三角形∴∠BAC=60°∵∠CAD+∠BAD=∠BAC=60°∴∠ABE+∠BAD=60°∴∠AFB=120°∴∠BFD=60°

如图,△ABC为等边三角形,D,E分别是AC,BC上的点,且AD=CE,AE与BD相交于点P……

∵正△ABC∴AB=AC∠BAC=∠C又∵AD=CE∴△ABD≌△CAE∴∠ABD=∠CAE∴∠APD=∠ABP+∠PAB=∠BAC=60°∴∠BPF=∠APD=60°∵Rt△BFP中∠PBF=30°

如图,已知AD\AE分别是△ABC的中线.

⑴△ABD周长=AB+BD+AD=AB+(1/2)BC+AD△ACD周长=AC+AD+DC=AC+AD+(1/2)BC两个相减,即AB-AC=2CM⑵△ABD面积=(1/2)BD*AE△ACD面积=(

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC

嗯能把问题说的明白些吗证明什么?HC平分?平分PQ吗?再问:平分角AHE.再答:在△ACD和△BCE中∵△ABC和△CDE是等边△∴BC=ACCE=CD∠BCA=∠BAC=∠ABC=∠DCE=∠DEC

如图,△ABC为等边三角形,D,E,F分别为AB,BC,CA上的一点,且AD=BE=CF, AE,BF,CD分

证明:∵等边△ABC∴AB=BC=AC,∠BAC=∠ABC=∠ACB=60∵AD=BE=CF∴△ABE≌△BCF≌△CAD(SAS)∴∠BAE=∠CBF=∠ACD∴∠MGN=∠ACD+∠CAE=∠BA

如图△ABC为等腰直角三角形,AB=AC,AD⊥AE且AD=AE

因为△ABC为等腰直角三角形所以∠CAB=90因为AD⊥AE所以∠DAE=90所以∠CAD=∠BAE因为AB=AC,AD=AE所以△ACD与△ABE全等所以BE=CD

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与B

∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE,∴①正

如图S△ABC=1,D、E为BC的三等分点,F、G为AC边三等分点,连结AD、AE、BF、BG,BF与AD、AE分别相.

连结IC,HC,设△ICE的面积为x,△ICG的面积为y由已知条件,△IBC与△ICE等高,且△IBC的底为△ICE的3倍,所以△IBC的面积为3x,同理,△TAC的面积为3y,另外,△BCG的面积=

如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,D为垂足,∠ABC的平分线分别叫AD,AC于点E,F 试说明“AE

证明:∵∠BAC=90°∴∠AFB+∠ABF=90°∵AD⊥BC∴∠CBF+∠BED=90°∵∠ABF=∠CBF∴∠AFE=∠BED∵∠BED=∠AEF∴∠AEF=∠AFE∴AF=AE

已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线

因为∠B=30°,∠C=50°所以∠BAC=180°-∠B-∠C=100°因为AD,AE分别是△ABC的高和角平分线所以∠DAC=180°-90°-∠C=40°∠EAC=∠BAC/2=100°/2=5