如图,AC是圆O的直径,PA垂直AC,弦CB平行OP,BD=2PA
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 13:36:30
设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD
∵cb//op∴∠aop=∠acb∵ob=oc(bc是弦)∴∠acb=∠obc∵cb//op所以∠obc=bop∴∠aop=∠acb=∠obc=∠bop又有ob=oa,op=op∴△aop≌△bop∴
(1)连接OB.∵BC∥OP,∴∠BCO=∠POA,∠CBO=∠POB∵BC是圆O的弦∴∠BCO=∠CBO∴∠POA=∠POB又∵PO=PO,OB=OA,∴△POB≌△POA.∴∠PBO=∠PAO=9
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
l连接OPOP垂直平分AB交AB于D△OAD∽△OAP∠P=2∠BAC=50°再问:三角形'Oad=oap求解释再答:两个三角形不是全等,是相似。两个都是Rt是三角形且有一个公共角∠AOP或者不用相似
过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD
半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2
1连接OC因为OA=OC所以∠OAC=∠OCA因为∠OAC=∠PAC所以∠OCA=∠PAC所以OC//PA因为CD⊥PA所以OC⊥CD所以CD是⊙O的切线2连接CE因为CD⊥PA,AD:CD=1:3所
∵BC‖OP,∴∠BCO=∠POA,∠CBO=∠POB.又∵PO=PO,OB=OA,∴△POB≌△POA.∴∠PBO=∠PAO=90°.∴PB是⊙O的切线
连接op,ab.交于点e.∵op‖bc,ab⊥bc,∠aop=∠acb∴∠bao=∠OPA,∠AEO=∠ABC即OP⊥AB,∵AO=OB=R∴OP垂直平分AB∴∠APD=2∠OPA设AP=X,BD=2
①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥
OP∥BC.证明:连接OB,AB.∵PA,PB均为圆O的切线.∴∠PAO=∠PBO=90°.(切线的性质)又∵OA=OB,OP=OP.∴⊿PAO≌⊿PBO(HL),∠2=∠3.∵OA=OB,∠2=∠3
证明:(1)∵AC是圆O的直径∴∠ABC=90°∵AD⊥BP∴∠ADB=90°∴∠ABC=∠ADB∵PB是圆的切线∴∠ABD=∠ACB在△ABC和△ADB中:∵∠ABC=∠ADB,∠ABD=∠ACB∴
∵PA切圆o于A,PB切圆o于B连接PO则OP平分∠AOB即∠AOB=2∠POB∵弧AB所对圆心角为∠AOB,所对圆周角为∠ACB(同弧所对圆心角是圆周角的二倍)∴∠AOB=2∠ACB∴∠POB=∠A
因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角
应该是PAPB分别切圆O,BC为圆o的直径求证AC平行OP证明:连接AB,OC∵∠PAO=∠PBO=90º∴PAOB四点共圆∴∠POB=∠PAB∵∠PAB=∠ACB【弦切角等于弦所对的圆周角
1.连接OB因为CB‖OP所以∠BCO=∠POA因为OB=OC所以∠BCO=∠CBO所以∠CBO=∠POA又因为∠CBO=∠POB所以∠BOP=∠POA在△POB和△POA中PO=PO∠BOP=∠PO
(1)连接PO,OB,设PO交AB于D.∵PA,PB是⊙O的切线,∴∠PAO=∠PBO=90°,PA=PB,∠APO=∠BPO.∴AD=BD=3,PO⊥AB.∴PD=52−32=4.在Rt△PAD和R
连接OB∵PB是切线∴∠PBO=90°∵PA是切线∴∠PAO=90°∵∠P=40°∴∠AOB=140°∵OC=OB∴∠C=∠OBC∵∠AOB=∠C+∠OBC∴∠C=140°÷2=70°再问:您好,再帮
PB与圆O相切,理由如下:连结OA∵PA切圆O于A,∴∠OAP=90°∵AC∥OP,∴∠C=∠POB,∠CAO=∠AOP,∵OA=OC,∴∠C=∠CAO,∴∠AOP=∠BOP,又∵OP=OP,OA=O