如图,ab是点o的直径,弦cd垂直于ab于点e,点p在点o上,角1等于角c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:15:00
如图,ab是点o的直径,弦cd垂直于ab于点e,点p在点o上,角1等于角c
如图,AB是圆O的直径,弦CD交AB于点p,角APD=60°

过O点做OE垂直CD于E所以OE垂直平分CD因为AP=5,BP=1所以AB=6=直径,即半径=3所以OP=OB-BP=3-1=2因为角APD=60度,三角型OPE是直角三角型所以EO=根号3在三角型O

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图,AB是同心圆O的直径,CD是同心圆O中非直径的弦,求证:AB>CD

作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE

如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E. 

(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=12CD=12×42=22,在Rt△OCE中,OC2=CE2+O

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆o的直径,弦CD⊥AB于点P,若AB=20,AP:PB=1:4,则CD=

利用相交弦定理∵AB=20AP:PB=1:4∴AP=16,PB=4∵AB⊥CD,AB是直径∴P是CD中点(垂径定理)∵AP*PB=CP*PD(相交弦定理)∴PC=PD=8CD=16

已知 如图,AB是圆O一条弦,点C为弧AB中点,CD是圆O的直径,过C点的直线L交AB所在直线于点E,交圆O于点F.

∵点C为弧AB的中点,CD是圆O的直径\x0d∴CD垂直AB\x0d∴角CEB+角FCD=90度\x0d∵CD是圆O的直径\x0d∴角CFD=90度\x0d∵角FDC+角FCD=90度\x0d∴角CE

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,

(1)证明:∵∠C=∠P又∵∠1=∠C∴∠1=∠P∴CB∥PD;(2)连接AC∵AB为⊙O的直径,∴∠ACB=90°又∵CD⊥AB,∴BC=BD,∴∠P=∠CAB,又∵sin∠P=35,∴sin∠CA

如图,AB为⊙O的直径,弦CD⊥AB于点E.

(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,

如图,AB是⊙O的直径,弦CD⊥AB于点M,AM=2,BM=8,求CD的长度.

连接OC,∵AB是⊙O的直径,弦CD⊥AB于点M,∴CD=2CM,∵AM=2,BM=8,∴AB=10,AC=AO=5,OM=AO-AM=3,在Rt△CMO中,CM=CO2−OM2=4,∴CD=8.

如图,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.若EB=8cm,CD=24cm,求⊙O的直径.

∵AB为⊙O的直径,AB⊥CD,∴CE=DE=12CD=12×24=12(cm),设⊙O的半径为xcm,则OC=xcm,OE=OB-BE=x-8(cm),在Rt△OCE中,OC2=OE2+CE2,∴x

如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:

证明:(1)∵CD是⊙O的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.①(2分)∵OC=OA,∴∠ACO=∠CAO,∴∠AOC=180°-2∠ACO,即∠AOC+2∠ACO=180°,两边

如图,已知CD是圆心O的直径,AB垂直于CD,垂足为C,弦DE//OA,直线AE、CD相交于点B.

(1)证明:连接OE,∵DE∥OA,∴∠COA=∠ODE,∠EOA=∠OED,∵OD=OE,∴∠ODE=∠OED,∴∠COA=∠EOA,又∵OC=OE,OA=OA,∴△OAC≌△OAE,∴∠OEA=∠

如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥CD于点H,连接CE、O

1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈

如图,点O的直径AB锤直于弦CD,锤足P是OB的中点,CD

解题思路:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧解题过程:见附件最终答案:略

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM

如图,AB是圆O的直径,CD是圆O的弦,AB,CD交于点P,且角APC=45度,若圆O的直径为2R,求证PC²

等等再答:过点O作OE⊥CD于E∵PA=1,PB=5∴AB=PA+PB=6∴AO=AB/2=3∴OP=AO-PA=3-1=2∵OE⊥CD∴CD=2DE,∠OEP=∠OED=90∵∠DPB=∠APC=4

如图,已知AC、AB、BC是⊙O的弦,CE是⊙O的直径,CD⊥AB于点D.

(1)证明:∵CE是⊙O的直径,∴∠CAE=90°,∴∠BAC+∠BAE=90°,∵CD⊥AB,∴∠BAC+∠ACD=90°,∴∠BAE=∠ACD,∵∠BAE=∠BCE,∴∠ACD=∠BCE;(2)∵