如图,ab是圆o的弦,且角a=角c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:04:49
1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
连接OM,OM交AB于N,因为CD切圆于点M,所以,CD⊥OM,因为CD‖AB,所以,AB⊥OM,那么△MNA和三角形MNB全等,所以AM=BM
连接OB由OB=OAOC=BC得到∠BOC=∠B=∠A∠ACO=∠BOC+∠B=2∠AOC⊥OA∠ACO+∠A=3∠A=90∠A=30
证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC
因为AB⊥OP于D,所以AD=AB/2=4CM,在直角三角形AOD中,由勾股定理,得AO^2=AD^2+OD^2=25,解得AO=5,因为PA为圆O的切线,所以∠PAD=∠AOP所以△APD∽△OAD
连结AO并延长与圆O相交于点D,连结BD,由圆的性质,AD为直径,AD=2,∠ABD=90º,又∠ADB与∠ACB同对着弦AB,∴∠ADB=∠ACB=45º,∴在直
如图所示:∵AB是圆O的直径又∵AC、AD是圆O的弦 且直径AB平分AC、AD所成的夹角∠CAD(已知条件)连接CO、DO 组成两三角形ACO、三角形ADO(只要证明 两
连接OE,OM=OC/2=OE/2,OC垂直于AB,角OEM=30度.EF//AB,角AOE=角OEM=30度.[内错角]角EOC=90度-角OEM=90度-30度=60度.角CBE=角EOC/2=3
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
①∵AB切⊙O于点B∴OB⊥AB则∠ABO=90°又∠BAO=30°,OA=4∴OB=2∠AOB=60°AB=2√3②∵CB∥OA∴∠CBO=∠AOB=60°又OB=OC∴△COB为正三角形则∠COB
弧BD=弧CD ∠BAD=∠CAD 即∠DAE=∠CAD DE为圆O切线∠EDB=∠BCD ∠BDA=∠BCA∠EDB+∠BDA=∠BCD+∠BCA
连DO、CO、AO,∠ACB=90°,AD=BD,根据直角三角形斜边上的中线等于斜边的一半,可得DA=DC,又DO=DO,OA=OC,因此△DOA≌△DOC,∴∠DCO=∠DAO=90°,∴CD是切线
连接OB,知三角形OAB和CBO匀为等腰三角形.角BAO=ABO,ABO=COB.即:角BAO=ABO=COB在三角形OAB中:角OAB+ABO+BOC+90度=180度得:3*角OAB=90度故角O
120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
第一步,过c做AB的垂线,求得ABC的面积第二步,利用切线长定理,得AE=AM,BE=BN,CM=CN,设圆半径为R,连圆心到各边及各顶点连线,第三步,利用面积,三个小三角形的面积和=ABC的面积,求
∵OD⊥AB,∠A=30∴AO=√3OD=3√3,AD=2OD=6∴AB=2AO=6√3∵直径AB∴∠ACB=90∴AC=AB×√3/2=6√3×√3/2=9∴DC=AC-AD=9-6=3再问:∴AO
等等再答:过点O作OE⊥CD于E∵PA=1,PB=5∴AB=PA+PB=6∴AO=AB/2=3∴OP=AO-PA=3-1=2∵OE⊥CD∴CD=2DE,∠OEP=∠OED=90∵∠DPB=∠APC=4
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60