如图 直线y=-1 2x 3与
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:29:53
设切点坐标为(x1,y1),过(0,-4)切线方程的斜率为k,则y1=x13+x1-2①,又因为y′=3x2+1,所以k=y′x=x1=3x12+1,则过点(0,-4)与曲线y=x3+x-2相切的直线
由直线直线l1:y=x+1可知,A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式可知,B1(1,1),AB1=1,A1(1,2),A1B1
(1)将直线y=-2x+12与直线y=x联立解得点C的坐标为C(4,4)(2)将直线y=-2x+12与直线y=0(即x轴)联立解得点A的坐标为A(6,0)故三角形AOC的面积为6*4÷2=12(3)由
(1)∵A、C为直线y=12x+2与x轴、y轴的交点,∴A(-4,0),C(0,2),设B点坐标为(x,0),∵P是一次函数y=12x+2上的点,PB垂直于x轴,∴P点坐标为(x,12x+2),∴AB
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
1.由A(1,6)可得:k2=xy=6即反比例函数y=6/x又B(a,3),可得:a=6/3=2由A(1,6),B(2,3)得:6=k1+b3=2k1+b联立解得:k1=-3b=9即直线y=-3x+9
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为y=-3
设A(X1,Y1),-1/X1=-X1+6,即x1^2-6x1-1=0,B(6,0)OA^2-OB^2=X1^2+Y1^2-36=X1^2+(-X1+6)^2-36=2X1^2-12X1=2(x1-6
曲线C1:y=x2,则y′=2x,曲线C2:y=x3,则y′=3x2,直线l与曲线C1的切点坐标为(a,b),则切线方程为y=2ax-a2,直线l与曲线C2的切点坐标为(m,n),则切线方程为y=3m
y=x3+3x2-5y‘=3x2+6x=-3x=-1y=-1即所求方程过(-1,-1),k=-3y=-3(x+1)-1
曲线y=x3+x-2求导可得y′=3x2+1设切点为(a,b)则3a2+1=4,解得a=1或a=-1切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x3+x-2相切的直线方程是:
设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,得b=-3,即P(-1,-3),y+3=
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1)则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为3x+y+
整合到一块?就是进行回归分析,将x123作为自变量,y作为因变量,求出三个自变量的回归系数,就可以拟合到一个多元回归方程里了如果说画图,是拟不到一块的,最多画出来的也是y和三个自变量的矩阵相关图,用来
由直线直线l1:y=x+1可知,A(0,1),根据平行于x轴的直线上两点纵坐标相等,平行于y轴的直线上两点横坐标相等,及直线l1、l2的解析式可知,B1(1,1),AB1=1,A1(1,2),A1B1
Y=ax^2,y=kx+b,有ax^2=kx+b,ax^2-kx-b=0,x1+x2=k/a,x1*x2=-b/a,而X3=-b/k,k=-b/x3则有:X3=-X1*X2/(X1+X2).则x1、x
∵y=x3+x∴y′=3x2+1.令y′=4⇒x2=1⇒x=±1.把x=1代入y=x3+x得:y=2.所以切线方程为:y-2=4(x-1)⇒4x-y-2=0;把x=-1代入y=x3+x得:y=-2,所
得6.再问:要再答:设A(x,y)B(b,0)y=-x+by=-3/xx^2-bx-3=0Δ=根号(b^2+12)x=(b-根号Δ)/2y=(b+根号Δ)/2x^2+y^2=b^2+6OA^2-OB^