如图 直线y mx与双曲线y x分之k的图像交于AB两点,过点A作AM⊥x轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:54:58
因为a,b都在y=8/x上,求得a(4,2),b(2,4).因为a为交点,故a在y=kx上,故k=0.5.oa解析式为y=x/2.容易看出opb直角三角形,其中角pob不会是直角,但其他两个角都可能是
应该是“做RM垂直x轴于点M”.依题意显然有:OQ‖RM,△OPQ∽△MPR,因为,△OPQ与△PRM的面积是4∶1,而且,相似三角形面积比等于对应边长比(即相似比)的平方,所以,OP∶MP=OQ∶M
将点A(4,y)代入y=1/2x得y=2,再将y=2代入y=k/x得k=2x,把点A(4,y)代入k=2x得:K=8∴y=8/x∴s=(m-4)*2*1/2=m-4
⑴直线Y=-2X+B过(1,K),∴K=-2+B,B=K+2,Q的横坐标:(B-2)/2=K/2,Q的纵坐标:Y=K÷(K/2)=2,∴Q(K/2,2);⑵题目意义不明,可得:B(1,2),PB=|K
因为点A横坐标为4,所以当x=4时y=2.所以,点A的坐标是(4,2).因为点A是直线y=1/2x与双曲线y=8/x(k>0)的交点,所以,k=4×2=8.(2)因为点C在双曲线上,当y=8时,x=1
y=x/2+1/2y=0,x=-1所以OA=1则OC=2所以C(2,0)BC垂直x轴则B横坐标也是2设B(2,a)在y=x/2+1/2上a=2/2+1/2=3/2则(2,3/2)在y=k/x所以k=x
解题思路:由y=kx−1x2−y2=4,得(1-k2)x2+2kx-5=0,则该方程有一正一负两根,可解得k值.解题过程:见附件!最终答案:略
显然k联立y=kx和y=k/x得kx=k/xx²=1,x=±1A在第二象限∴x=-1A(-1,-k)AB⊥x轴,则AB=|-k|=-kS(△ABO)=1/2*OB*AB=1/2*1*(-k)
把A(1,5)代入y=m/x,得m=5,把B(-5,n)代入y=5/x,得n=-1,把A(1,5)和B(-5,-1)代入y=kx+b,得k+b=5-5k+b=-1解得k=1,b=4,得直线的解析式当X
将直线y=四分之三x想下平移6个单位后,直线方程为:y=3/4x-6,与x轴交点坐标C(8,0),若AO比BC=2,∵AO∥BC,∴ya/yb=2,(第一象限ya>0,yb>0).ya=√(3k)/2
设A(X1,Y1),-1/X1=-X1+6,即x1^2-6x1-1=0,B(6,0)OA^2-OB^2=X1^2+Y1^2-36=X1^2+(-X1+6)^2-36=2X1^2-12X1=2(x1-6
1、设AB与X轴相交于C点,则OC=t,A、B两点坐标分别为A﹙t,k1/t﹚,B﹙t,k2/t﹚;∴S=△OAB面积=½×AB×OC=½×﹙k1/t-k2/t﹚×t=½
如图如图=.=看不到图的话可以HI我.
设CD的中点为E;由双曲线y=k/x的对称性可知:E点也是AB的中点;又CD=(2/3)AD;所以AC=CE=ED=BE;由A(8,0);B(0,8)知:AB=8√2;AC=(1/4)AB=2√2;设
(1)S三角形ABO=1.5,B在Y轴左边,则双曲线Y=K/X中XY=-3则K=-3,Y=-3/X,Y=-X-(-3+1)即Y=-X+2(2)解方程-3/X=-X+2得X1=-1,X2=3A的Y坐标为
(1)y=x/2与y=k/x联立方程组,求得交点(根号2k,二分之根号2k),(负根号2k,负二分之根号2k).已知A点横坐标为4,则根号2k为4,所以k=8.(2)由(1)得,k=8,由已知C点纵坐
y=-√3/3x+b与y轴交点A(0,b)与y=k/x在第一象限交于B,C-√3/3x+b=k/xx²-√3bx+k=0x1+x2=√3b,x1x2=kAB*AC=4√{x1²+(
(1)当k1×k2>0的时候,直线与双曲线有两个交点(2)将A(1,2)代入y=k1/xk1=2,代入y=k2x,k2=2y=2/x(1)y=2x(2)(1)-(2)2/x-2x=01/x-x=0x(
AB过原点交双曲线,A、B两点肯定为原点对称的两点,所以AC=BC,题中得知AC*BC=2*8=16,故AC=BC=4,A(-2,2),B(2,-2),带入双曲线得到K=-4
得6.再问:要再答:设A(x,y)B(b,0)y=-x+by=-3/xx^2-bx-3=0Δ=根号(b^2+12)x=(b-根号Δ)/2y=(b+根号Δ)/2x^2+y^2=b^2+6OA^2-OB^