如图 直线l:y=-2 1x 2与
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:10:16
证明:园M:(x-4)²+(y-1)²=8,圆心M(4,1);半径R=2√2直线L:kx-y-3k=0过定点P(3,0)│MP│=√[(4-3)²+(1-0)²
(1)当k=2时,直线l的方程为:2x-y+2=0-------(1分)设直线l与圆O的两个交点分别为A、B过圆心O(0,0)作OD⊥AB于点D,则OD=|2×0-0+2|22+(-1)2=25---
当直线与圆相切时则此时x最大,设切点为F,连FO即OP,在三角形中解得x最大为2倍根2则范围[0,2倍根2]
(1)∵已知抛物线y1=-x2+bx+c(a≤O)与直线AB:y=kx+l交于A(-4,0)、B(0,4),∴−16−4b+c=0c=4,−4k+l=0l=4.∴b=-3,k=1.∴y1=-x2-3x
解由x2+y2+4y-21=0即x²+(y+2)²=25圆心(0,-2)半径为5由若直线l与圆C有公共点即圆心(0,-2)到直线ly=2x+b的距离小于等于圆的半径即/2*0+b+
解圆x2+y2=4的圆心A(0,0)圆x2+y2+4x-4y+4=0的圆心B(2,2)AB的中点C(1,1)直线AB的斜率为1所以与直线AB垂直的直线的斜率为-1所以过C(1,1)且与直线AB垂直的直
∵y=3/4x+3所以A(-4,0)B(3,0)所以AB=根号3²+4²=5所以AP=3×4÷5=2.4再问:那么点P的坐标应为多少?再答:(-36/25,48/25)
(Ⅰ)由y=kx−2x2=−2py得,x2+2pkx-4p=0,设A(x1,y1),B(x2,y2),则x1+x2=-2pk,y1+y2=k(x1+x2)-4=-2pk2-4,因为OA+OB=(x1+
设直线方程为x+y+a=0圆心到直线的距离=半径=2√2所以|a|/√(1方+1方)=2√2|a|=4a=±4直线方程为x+y+4=0或x+y-4=0
(I)由x2=4y得y=14x2,∴y′=12x.∴直线l的斜率为y'|x=2=1,故l的方程为y=x-1,∴点A的坐标为(1,0).设M(x,y),则AB=(1,0),BM=(x−2,y),AM=(
曲线C1:y=x2,则y′=2x,曲线C2:y=x3,则y′=3x2,直线l与曲线C1的切点坐标为(a,b),则切线方程为y=2ax-a2,直线l与曲线C2的切点坐标为(m,n),则切线方程为y=3m
(1)将y=mx+1-m代入x²+(y-1)²=5得(1+m²)x²-2m²x+m²-5=0|AB|=√(1+m²)[(2m
1、因为P在抛物线y=x²上,且横坐标为-2所以P的坐标(-2,4)P(-2,4),M(2,0)代入直线方程y=kx+b-2k+b=42k+b=0解得k=-1,b=2所以直线为y=-x+22
已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.[解析]设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).对于C1:y′=2x,
抛物线y=12x2+1是y=12x2-1向上平移2个单位长度得到的,即|y1-y2|=2.当直线l向右平移3个单位时,阴影部分的面积是,2×3=6.
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=再问:能说的详细点吗==初三的学
设直线l的方程为y=kx+b,由直线l与C1:y=x2相切得,∴方程x2-kx-b=0有一解,即△=k2-4×(-b)=0 ①∵直线l与C2:y=-(x-2)2相切得
圆x2+y2-4x+4y-1=0的圆心坐标(2,-2)半径是3;圆x2+y2=9的圆心(0,0)半径是3;两个圆的圆心的中点坐标(1,-1)斜率为-1,中垂线的斜率为1,中垂线方程:x-y-2=0故选