如图 点e是正方形abcd中边BC上一点,点f在cd边的延长线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:05:13
作图,连结FC',A'C',A'F∵E,F分别是棱AA',BB'的中点则有EC'‖且=FC'求A‘F与D'E所成角的余弦值则求∠A'FC'的余弦值其中设正方体边长为1AF'=FC'=根号(1*1+1/
证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌
连接AC.可以知道G是三角形ABC的3条中线的相交点,就是重心.所以:S三角形ACG=S三角形ABG=S三角形BCG==1/3*S三角形ABC=1/6*S正方形ABCD.S四边形AGCD=S三角形AC
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
∵正方形ABCD的面积为5∴BC=根号5正方形CEFG的面积是2∴CE=根号2△BDG的面积=(根号5-根号2)×根号5=5-根号10=5-3.162=1.838
∵AD‖BE∴△ADF∽△EBF∵E是BC中点∴BE∶AD=BF∶FD=1∶2∵△DEF面积为4∴△BEF面积为2(高相同)∴△BDE的面积为6∴△ACD的面积=12∴正方形ABCD的面积=24
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
证明连接BD,AB'∵是正方体,E,F是AB,BC中点∴EF⊥BD∵EF⊥BB'∴EF⊥平面BDB'∴EF⊥B'D同理GE⊥AB'GE⊥AD∴GE⊥平面ADB'∴GE⊥B'D∴B'D⊥平面GEF
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
当动点P在A---B间运动时,如图(1) ∵ABCD是边长为1的正方形 ∴ △APE的高是1 而AP=x ,△APE的面积为y ∴ 
证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.  
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切
这题不难,这里正方形边长看成n(注意不要看成1,计算方便),在此时解这题的关键就是求出正方形MNPQ面积由题有:AE=BF=CG=DH=1,多边形MNPQ和多边形ABCD均为正方形.∵BN是直角三角形
FH=AH×m/12GF=2AH[易知FG=AE]HG=2AH-FH=AH[24-m]/12∴FH/HG=[m/12]/﹛[24-m]/12﹜=m/﹙24-m﹚
矩形相似可以得到AB/EC=BC/CDAB=CD=a,BC=b得EC=a^2/b对从图中可知道:EC=BC-BE=b-aa^2/b=b-a等式两边同除以b(a/b)^2=1-a/b解这个方程求出的那个
作线段GF⊥AD,并把GF延长到H与BC交于H.∵△ADF∽△BEF,AD=2BE,∴GF=2FH,∴GF=2/3*GH=2/3*AB.而△DEF=△ABE-△ADF=(AD*AB)/2-(AD*GF
⊿ABF等腰直角,(∵∠A=90º,∠ABF=45º),同理⊿ABE等腰直角,AF=AB=BE,AF‖=BE,ABEF是平行四边形.FE=AB.ABEF四边相等,为菱形,∠A=90