如图 点a为双曲线y=2÷x(x﹥0)的图像上一点,AB∥x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:26:44
如图 点a为双曲线y=2÷x(x﹥0)的图像上一点,AB∥x
已知双曲线C的方程为x^2-y^2/2=1,直线x-y+m=0与双曲线C交于两点A、B.且线段AB的中点在圆x^2+y^

设A,B点坐标为;(x1,y1),(x2,y2),则:AB的中点坐标为:((x1+x2)/2,y1+y2)/2).依题意得:x1^2-y1^2/2=x2^2-y2^2/2=1,x1-y1+m=x2-y

简单的双曲线的题已知双曲线x方/a方-y方/2=1 a>2的两条渐近线的夹角为 派/3,则双曲线的离心率是多少?若双曲线

√2/a=tan(π/6)=√3/3∴a=√6c=√(6-2)=2e=c/a=2/√6=√6/3设双曲线半焦距为c,则准线方程为x=±(16/c)x²+y²+2x=0化成标准形式:

双曲线渐近线方程为y=正负根号2/2x 双曲线过点(2,1),求双曲线方程

双曲线渐近线方程为y=正负根号2/2x即x±√2y=0设双曲线方程x²-2y²=k代入(2,1)4-2=kk=2方程为x²/2-y²=1

如图,已知双曲线x^2/a^2-y^2/b^2=1(a>b>0),其右准线交x轴于点A,双曲线虚轴的下端点为B,过双曲线

其实不难:(1)B(0,-b)A(a2/c,0);P(c,b2/a);D(c,c/2+b2/2a),A、B、D共线,得a=2b,可算得e根号下5/2(2)C(0,4)

双曲线题:已知F1,F2,分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,

设A点坐标为(m,n),则左焦点F1(c,0)与A点连线方程为(m+c)y-n(x+c)=0,右焦点F2(c,0)到该直线的距离|n(c+c)|/√(m²+n²)=2a,即c

双曲线x^2÷a^2-y^2÷b^2=1的左右焦点为F1和F2,点P在双曲线上,已知PF1=4,求双曲线的离心率的最大值

题少给条件了吧应该是PF1=4PF2这样根据要使其最大离心率就是c+a/c-a大于等于4得到e小于等于5/3所以选C

已知P是双曲线x^2/a^2-y^2/9=1右支上的一点,双曲线的一条渐近线方程为3x-y=0,设F1、F2分别为双曲线

x^2/a^2-y^2/9=13x=y可以推出a=1双曲线x^2-y^2/9=12a=2=|PF1|-|PF2|椭圆的性质|PF2|=3|PF1|=3+2=5

已知P为双曲线x^2/a^2—y^2/b^2=1左支上一点,为双曲线的左右焦点,且^

sinpf1f2=cospf2f1=sin(90-pf2f1)所以pf1f2+pf2f1=90,所以PF1⊥PF2PF1-PF2=2asinpf2f1=根号5/5tanpf2f1=2tanpf2f1=

关于双曲线的一道题已知双曲线的焦点在x轴上,两渐近线方程为y=±√3 x,点A,B在双曲线上,且关于直线x+y+2=0对

设双曲线方程为x^2/a^2-y^2/b^2=1由已知条件得,b=±√3a.设C点坐标为(x,y)∣AB∣=3√2,且关于直线x+y+2=0,K(AB)=-1/(-1)=1A点坐标(x-1.5,y-1

如图所示,点A在x轴上,点C在双曲线y=1÷x上,点B在双曲线y=3÷x上,且BC∥x轴,则△ABC的面积为?

因为BC//x轴,A在x轴上所以A到BC的距离(即三角形ABC中BC边上的高)等于B、C的纵坐标设:B、C的纵坐标为n则C点的横坐标=1/nB点的横坐标=3/n因为B、C都在第一象限所以BC=3/n-

请问:若双曲线渐近线方程为x=±b/a y,即x/b±y/a=0,则可设双曲线标准方程为x^2/b^2±y^2/a^2=

不行,应改为x^2/b^-y^2/a^2=m(m≠0)否则取加号时x^2/b^2+y^2/a^2=m,当m大于0时曲线方程就表示椭圆,而不是双曲线.取加号就不存在这种情况,m>0,曲线方程表示焦点在x

已知双曲线x*/a*-y*/b*=1(a>根号2)的两条渐近线的夹角为60°,则双曲线的离心率为多少

当a>b时渐近线的斜率为正负3分之根号3e方=1+b方/a方=4/3e=2倍根号3/3当a

已知双曲线x²/a²+y²/b²=1的渐近线方程为y=正负2x,那么此双曲线的离

根号五.可追问过程再问:过程再答:渐近线y=±b/ax再答:设a=t,b=2t。c^2=a^2+b^2。所以c^2=5t^2再答:e=c/a

双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|P

令PF1=m,PF2=nm-n=2aPF1F2=30所以n/m=sin30=1/2m=2nn=2a,m=4a所以P(c,2a)c^2/a^2-4a^2/b^2=1tan30=PF2/F1F2=2a/2

双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1||PO||PF2

令PF1=m,PF2=nm-n=2aPF1F2=30所以n/m=sin30=1/2m=2nn=2a,m=4a所以P(c,2a)c^2/a^2-4a^2/b^2=1tan30=PF2/F1F2=2a/2

已知双曲线的方程为X^2/a^2-Y^2/b^2=1

设PF1=m,PF2=n,则m²+n²=(2c)²,而|m-n|=2a,从而4a²=(m-n)²=m²+n²-4mn=4c&sup

已知双曲线a方分之x方-y方=1的一条准线方程为x=2分之3,则该双曲线的离心率为

²=1所以c²=a²+b²=a²+1a²=c²-1准线x=±a²/c所以a²/c=3/22a²=3c

如图点a为双曲线y=2/x的图像上一点,过a作ab//x轴交双曲线y=-4/x于点b连ao,bo,求三角形aob的面积.

设A点坐标为(X1,2/X1),B点坐标为(X2,-4/X2),因为AB∥X轴,所以2/X1=-4/X2,X2=-2X1所以S△AOB=0.5*IX1-X2I*I2/X1I=0.5*3*2=3