作业帮 > 数学 > 作业

双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|P

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:05:49
双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|PF2|成等比数列
(O为坐标原点).
双曲线x^2-y^2=a^2(a>0)的两个焦点分别为F1,F2,P为双曲线上任意一点,求证:|PF1|,|PO|,|P
令PF1=m,PF2=n
m-n=2a
PF1F2=30
所以n/m=sin30=1/2
m=2n
n=2a,m=4a
所以P(c,2a)
c^2/a^2-4a^2/b^2=1
tan30=PF2/F1F2=2a/2c=√3/3
c^2/a^2=3
3-4(a/b)^2=1
(a/b)=√2/2
b/a=√2
y=√2x,y=-√2x