如图 抛物线y=ax2-13x 2与x轴交于点A和点B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 07:25:21
(1)解y=−x2+4xy=13x2 得x=3y=3 或x=0y=0,∴A点的坐标为(3,3);(2)如图所示:作AE∥y轴,直线x=t与抛物线y=-x2+4x的交点B(t,-t2
(1)已知二次函数y=ax2的图像经过点根号2,3/2,求抛物线函数解析式y=0.75x2(2)求抛物线上的纵坐标等于3的点的坐标,x=2或x=-2(-2,3)和(2,3)(3)当x在什么范围内时,y
解题思路:见解答解题过程:解:(1)∵抛物线y=ax2+bx(a≠0)经过点A(3,0)、B(4,4),∴解得:∴抛物线的解析式是y=x2-3x;把x=2,y=n代入y=x2-3x得y=-2∴D(2,
与抛物线f(x)=x2--4x+3的图象关于y轴对称的函数为f(-x)=(-x)^2-4(-x)+3=x^2+4x+3即函数y=ax2+bx+c的解析式为y=x^2+4x+3
1)将(1,0),(4,3)代人到y=ax²+bx+3,得,a+b+3=0,16a+4b+3=3解得a=1,b=-4所以解析式为y=x²-4x+3 2)点
容易求得A点坐标(-1,0)B坐标(3,0)C坐标(2,-3)AC方程y/(x+1)=(0+3)/(-1-2)y=-x-1设P点为(x0,y0)y0=-x0-1(-1=
y=-(1/2)(x-2)(x-3)=-(1/2)x^2+(5/2)x-3
经过A(-2,2)、B(6,6)两点的直线的解析式为:y=x/2+3过原点的抛物线的解析式为:y=x^2/4-x/2,与x轴的另一个交点F(2,0)经过B、F两点的直线的解析式为:y=3x/2-3设E
1.因为P点横坐标是1,所以X1+X2=2,|X1|+|X2|=4X1
(1)经过O,A(4,0),可表达为y=ax(x-4)经过B(3,√3):-3a=√3a=-√3/3,b=4√3/3抛物线的函数解析式:y=-√3/3(x²-4x)(2)t秒时:P(t,0)
抛物线看不见再问:再问:会不啊?再答:思考一下再问:快点
(1)由题意知,C(0,2√3)D(-b/2a,(4ac-b^2)/4a)将其代入CD表达式中得c=2√3,故D(-b/2a,(8√3a-b^2)/4a)将其代入CD表达式中得,b=2√3(2)设直线
解题思路:利用图象上的点满足函数关系式来求出解析式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/
由题意可知:8c=(4ac-b^2)\a,b^2-4ac=2a^2,b\a=(4ac-b^2)\4a,解得a=-2,b=-2,c=-1\2从而y=-2x^2-2x+1\2.
(1)∵形状及开口方向与抛物线y=-1/2x2相同∴ a=-1/2∵ 顶点坐标是(0,2)∴ 0+c=2 , c=2(2)y=
由抛物线与y轴相交于点C,就可知道C点的坐标为(0,c),又因OC=OA,所以A(-c,0),把它代入y=ax2+bx+c,即ac2-bc+c=0,两边同时除以c,即得到ac-b+1=0,所以ac+1
∵抛物线y=ax2+bx+c(a≠0)的图象与抛物线y=x2-4x+3的图象关于y轴对称,∴函数y=ax2+bx+c的解析式为:y=(-x)2-4(-x)+3=x2+4x+3.故答案为:y=x2+4x
(1)由已知,圆C2:x2+(y+1)2=5的圆心为C2(0,-1),半径r=5.(1分)由题设圆心到直线l1:y=2x+m的距离d=|1+m|22+(−1)2.(3分)即|1+m|22+(−1)2=
∵点A的横坐标为-1,∴y=12×(-1)2=12,y=-14×(-1)2=-14,∴点A(-1,12),B(-1,-14),∴AB=12-(-14)=34,根据二次函数的对称性,BC=1×2=2,阴