如图 已知ab为圆o的直径 cd是弦 ab垂直cd于e of垂直ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:11:40
如图 已知ab为圆o的直径 cd是弦 ab垂直cd于e of垂直ac
如图,已知ab是直径圆O的直径,CD是弦,AE⊥CD,垂足为点E,bf⊥CD,垂足为点F 求证DF=EC

作OH垂直DE于H,圆,CH=HDAE⊥CD,垂足为点E,bf⊥CD,OH垂直DE,OA=OB,梯形中位线,EH=HFDF=CE

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图,AB为圆O的直径,CD是圆O的弦,AB,CD的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.

连接OD,则OD=OC=DE∴角E=∠DOE=18°所以,∠ODC=∠OCD=36°(∠ODC是外角)∴∠AOC=72°(同上)

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

如图,已知AB为圆o的直径,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.

∴AB是直径,∴∠BCE+∠ACE=90°,∵AB⊥CD,∴∠CAE+∠ACE=90°,∴∠CAE=∠BCE,∵∠AFO=∠CEB=90°,OF=BE,∴ΔAFO≌ΔCEB(AAS).

如图,AB是圆O的直径,CD为弦,CD⊥AB于点E

∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10

如图,AB是圆O的直径,弦CD⊥AB于P,已知CD=8,∠B=30°,求元O的直径

连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30

如图,已知AB是圆O的直径,CD、AB分别是圆O的切线.切点分别为D、B,求证OC平行AD

图不对哦证明:连接OB、OD∵CD、CB是圆O的切线∴∠ODC=∠OBC=90°∵OD=OB,OC=OC∴△OBC≌△ODC∴∠COB=∠COD∵OA=OD∴∠A=∠ODA∵∠BOD=∠A+∠ODA=

如图,已知AB是圆o的直径,P为延长线上的一点,pc切圆o于c,cd垂直ab于d,又pc=4圆o的半径为3,求cd的长度

∵pc与圆O相切,oc为圆O半径∴pc垂直于oc,△ocp为直角三角形根据勾股定理,∴op=√3^2+4^2=5∵S△ocp=S△ocp且cd垂直于ab∴(oc*cp)/2=(cd*op)/2即(3*

圆 垂径定理已知AB是圆O的直径,CD是弦,AB=20,CD=16,过A、B向CD引垂线,垂足分别为E、F如图,弦CD与

取CD的中点M,连接OM,OM是CD的弦心距,OM垂直于CD,AE垂直于CD,根据三角形相似,OM/AE=OP/AP=OP/(10+OP),整理得OP=10OM/(AE-OM)OM垂直于CD,BF垂直

如图,已知AB为圆O的直径,CD是弦,AB垂直CD于E,OF垂直AC于F,BE=OF

证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)

已知:如图,AB是圆O的直径,CD为弦,且AB⊥CD于E,F为CD延长线上一点,连接AF交圆O于M.求证∠AMD=∠FM

证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了

如图,已知圆O的半径为4,CD是圆O的直径,AC为圆O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC

(1)证明:连接AO,因为△ABC中,AB=AC,∠ABC=30°,所以∠ACB=∠ABC=30°,即∠BAC=120°,又因为OA=OC所以∠OAC=∠OCA=30°,因此∠OAB=90°,即OA⊥

已知 如图 AB是⊙O的直径 点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F

1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC

如图,AB为圆O的直径,CD为圆O得弦,

1连接BD.因为角ACD与角ABD对应同一条弦AD,所以,角ACD=角ABD,有因为AB为直径,所以三角ABD形为直角三角形,所以角BAD=48度.2在直角三角形ABD中,AB的平方=AD的平方BD的

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=