如图 在四边形ABCD中,M,N,E,F分别为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 07:04:21
如图 在四边形ABCD中,M,N,E,F分别为
已知,如图,在四边形ABCD中,M,N,E,F分别为AD,BC,BD,AC的中点.求证:MN,EF互相平分.

ME,FN分别为三角形DAB,CAB的中位线,所以ME平行且等于(1/2)AB,FN平行且等于(1/2)AB,所以ME平行且等于FN,所以MENF为平行四边形,所以MENF的对角线EF,MN互相平分.

如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在四边形ABCD中,∠BAC=∠BDC=90°,M、N分别是AD、BC中点.求证MN⊥AD

证明:连接AN、DN∵AN、DN分别是直角三角形ABC和直角三角形DBC斜边BC上的中线∴AN=DN=1/2BC∵MN是等腰三角形NAD底边AD的中线∴MN⊥AD(等腰三角形三线合一)

如图在四边形ABCD中,P、M、N、Q分别是AC、AB、CD、MN的中点,AD=BC,求证:PQ垂直MN

证明:因为:P、M、N、Q分别是AC、AB、CD、MN的中点所以:MP=(1/2)BC      NP=(1/2)AD而BC=AD所以:MP

如图,已知在平行四边形ABCD中,AE=CF,M、N分别是BE、DF的中点,试说明:四边形MFNE是平行四边形

∵四边形ABCD是平行四边形∴AD=BC,又∵AE=CF∴AD-AE=BC-CF即DE=BF∵DE∥BF∴四边形BEDF是平行四边形∴BE=DF∴M、N分别是BE、DF的中点∴EM=BE/2=DF/2

如图,在四边形ABCD中,AB=CD,M.N.P.Q分别是AD.BC.BD.AC的中点,求证:MN与PQ互相垂直平分

证明:连结MP、PN、NQ、QM∵M、N、P、Q分别是AD、BC、BD、AC的中点∴MP=NQ=1/2AB,PN=QM=1/2CD∵AB=CD∴MP=NQ=PN=QM则MPNQ是菱形,所以MN与PQ互

如图,在四边形ABCD中,∠BAC=∠BDC=90°,M,N分别是AD,BC的中点,求证:MN⊥AD.

连AN,DN,∵∠BAC=∠BDC=90°,M,N分别是AD,BC的中点∵AN=DN=1/2BC∴MN⊥AD.﹙等腰三角形底边中线垂直底边﹚

如图,在四边形ABCD中,∠ABC=∠ACD=90°,M,N分别是AC,BD

在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:MN⊥BD原题是这样的吧!童鞋,请不要重复发帖子啊!浪费时间!证明:连结BM,DM在Rt△ABC中,点M是斜边AC的

如图,在四边形ABCD中,AB=CD,M,N,E,F分别为AD,BC,BD,AC的中点,求证:四边形MENF为菱形

因为M,N,E,F分别为AD,BC,BD,AC的中点所以ME=0.5AB=FN,MF=0.5CD=EN因为AB=CD所以ME=FN=EN=MF所以四边形MENF为菱形

在四边形ABCD中,点M、N分别在AB、BC上,且MN=AM+CN.如图1,若四边形ABCD为正方形,则角MDN=?如图

将三角形DCN绕点D顺时针旋转,使得CD与AD重合.设点N的新位置为点P.因为角A+角C=180度,所以P在直线AB上.三角形DMN与三角形DMP全等(三边对应相等),所以角MDN是角ADC的一半.(

已知,如图,在四边形ABCD中,AB=AD,CB=CD,点M,N.P,Q分别是AB,BC,CD,DA的中点,求证:四边形

证明:连接A,C连接B,D交AC于O点,令AC与MO的交点为S∵AD=AB,DC=BC,AC=AC∴∠AOD=∠AOB=90°∵M,N.P,Q分别是AB,BC,CD,DA的中点∴MQ‖BD,QP‖AC

如图,在平行四边形ABCD中,AE=CF,M,N分别为ED、FB的中点,试说明四边形ENFM为四边形

因为四边形ABCD为平行四边形所以AD=BC,AD平行于BC又因为AE=CF所以ED=BF因为M\N为ED、FB的中点所以EM=FN且EM平行于FN所以四边形ENFM为四边形

(2009•淮安模拟)如图,在三棱柱BCE-ADF中,四边形ABCD是正方形,DF⊥平面ABCD,M,N分别是AB,AC

证明:(1)如图,连接DN,∵四边形ABCD是正方形,∴DN⊥AC∵DF⊥平面ABCD,AC⊂平面ABCD,∴DF⊥AC又DN∩DF=D,∴AC⊥平面DNF∵GN⊂平面DNF,∴GN⊥AC(2)取DC

如图,在四边形ABCD中,AC=BD,M,N,P,Q分别是AD,BC,AB,DC的中点(1)猜想四边形MPNQ是什么特殊

◇根据三角行中位线原理:PM平行与BD,等于BD的二分之一;NQ也平行于BD,等于BD的二分之一.所以PM平行且相等于NQ,同理PN平行且相等于MQ.所以是平行四边形.又因为AC=BD,所以这个平行四

如图,在四棱锥P-ABCD中,四边形ABCD为矩形,AB⊥BP,M,N分别为AC,PD的中点.

(1)连接BD交AC与M在三角形BPD中,M、N分别是BD,PD的中点所以MN平行BPBP在面ABP内所以MN平行于面ABP(2)因为AB⊥BP,AB⊥BC所以AB⊥面BCP所以AB⊥PC必要性:又因

如图,在四边形ABCD中,AB=CD,M、N分别是AD、BC的中点如图,在四边形ABCD中,AB=CD,M、N分别是AD

证明:连接AC取AC中点P,∵M,N分别是AD,BC的中点∴NP‖AB,PM‖CD,NP=AB/2,PM=CD/2∠PMN=∠NFC,∠PNM=∠BEN∵AB=CD∴NP=PM∴∠PNM=PMN∴∠B

如图,在▱ABCD中,点M、N在对角线AC上且AM=CN.请判断四边形BMDN的形状,并说明理由.

四边形BMDN为平行四边形.理由如下:连BD,交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD. ∵AM=CN,∴OA-AM=OC-CN,即OM=ON.∴四边形BMDN为

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB

如图,在平行四边形ABCD中,M,N,P,Q分别是AB,BC,CD,AD的中点,试判断四边形MNPQ是怎样的四边形?并说

如图,∵M、N是AB、CB中点,∴MN∥AC且MN=AC/2(三角形中位线定理),同理,PQ∥AC,且PQ=AC/2,∴MN∥PQ,且MN=PQ∴四边形MNPQ是平行四边形(一组对边平行且相等的四边形

如图,四边形ABCD中,点E、F分别在BC、CD上,DF=FC,CE已知S△ADF=m,S四边形AECF=n,(n>m)

抄错了吧,应该还有CE=BE.连结AC.S△ADF=S△ACF、S△ACE=S△ABE所以,S△ACE=S△ABE=n-m四边形ABCD面积=2m+(2n-m)=2n.再问:补充一下:CE=2EB,现