如图 在三角形abc中点o为角abc和角acd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:56:54
直角三角形斜边上的中线等于斜边的一半,用这一个结论就可以证明你的两个问题.这个结论无需再证明.第一个问题,CO为直角三角形ACB斜边AB的中线,故CO=AB/2=AO=BO,则证明O到A、B、C,3点
O为AB中点,所以OA=OB=OC,所以ABC在O的圆上连OD,OD=OB=OC=OA,四点共圆再问:我要过程再答:再简单不过了,总不能把定理再证明一遍吧.在Rt△ABC中,∠C=90度O为AB中点作
证明:作OD⊥AB于D,OE⊥CB于E,OF⊥AC于F.∵∠OBC=∠OBD∠OCB=∠OCF∴OD=OEOE=OF∴OD=OE∴点o在角a的平分线上
再问:再答:看不清楚题目啊!手机像素不够呢!再问:再答:再问:谢谢啦
(1)如图,△ODE∽△ABC,理由简要如下:∵OB=OA,∠B=∠1=45°,BD=AE,∴△OBD≌△OAE,∴OD=OE,∠2=∠3,∴∠DPE=∠BOA=90°,∴△ODE是等腰直角三角形,∴
OED周长=10因为OE=BEOF=FC又因为BE+EF+FC=BC=10所以OE+EF+FC=BC=10(这道题是利用角平分线使被平分的两个角相等然后平行使角ABO与另一个角BOE相等又因为角ABO
连接OQ、PC因为BC是直径,所以角BPC=角APC=90度因为Q是AC中点,所以PQ=CQ因为OC=OP,OQ=OQ,所以三角形OCQ与OPQ全等,所以角OPQ=角OCQ=90度,所以PQ与圆相切
证明:做∠ABC的平分线,交AC于N点,连NM,则∠NBM=∠C∵在△BNM和△CMN中,NM=NM,BM=CM,∠NBM=∠C∴△BNM≌△CMN,则BN=CN,∠NMC=90,NM∥AD则有CN:
奇怪的题目:先证明KG重合由EG=2GF,EF垂直AB于AB点F,得知AB为EG中垂线,又有AB为直径,E为圆上一点,知G也在圆上,而K是圆和AH交点,故知K和G重合.接下来证明角EAB=30度.由于
(1)由ACAB=2,得到AC=2AB,再由O为AC的中点,得到AC=2OC,可得出AB=OC,由∠BAC=90°,AD⊥BC,利用同角的余角相等得到一对角相等,再利用外角性质得出一对角相等,利用AA
连接AO∵△ABC是等腰直角三角形,O是BC的中点∴∠BAO=∠B=45°,AO=BO∵BM=AN∴△BOM≌△AON∴OM=ON∠BOM=∠AON∵∠BOM+∠AOM=90°∴∠AON+∠AOM=9
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;
证明:(1)在Rt△ABC中,∠BAC=90°,∠C=30°,D为BC的中点,∴∠ABD=60°,AD=BD=DC.∴△ABD为等边三角形.∴O点为△ABD的中心(内心,外心,垂心三心合-).连接OA
答案:取AC中点F.连接EF,DF.因为E为AB的中点,所以EF//BC(三角形中位线平行于第三边),∴∠FED=∠B,DF=CF=AF=AC/2=4cm(直角三角形斜边中线等于斜边的一半),∴∠FD
(1)连接OF∵CD是直径∴CD过O点∴CO=OF=1/2CD在RT△ABC中∵D是AB中点∴CD=AC=DB=1/2AB∴CO:CD=OF:DB=1/2又∵∠OFD=∠ODF=∠DBC∴OF//AB
证明:连接DF,可以判定角AFC=90°(直径CD所对应的圆周角为90度),所以角AFC=角C=90°.所以DF平行AC,又因为D为AB的中点,可以判定DF为三角形ABC的中位线,所以F为BC的中点.
垂直.连接OAOA1,作C1H垂直AA1延长线于H则有:角AOA1和COC1=a所以:角AA1O=角CC1O又因为A1O垂直B1C1即:角A1OC1=90°根据四边形内角和360所以:角A1HC1=9
(1)连接DF因为DC是圆的直径,F在圆上所以角DFC=90度所以DF垂直BD所以三角形BDF相似于三角形BAC所以BF:BC=BD:BA因为D是AB中点所以F是BC中点(2)连接DE,GF按(1)的
(2)、OF=CF,则EF是三角形OBC的中位线,EF‖AB,DE⊥BC,OB=OD,四边形OBED是正方形,连结OE,OE是三角形ABC的中位线,OE‖AC,〈A=〈EOB=45度,〈ACO=〈CO
证明:(1)连接DE、DF依题意可知,CD、EF为圆O的直径.有:∠ECF=∠CFD=∠FDE=∠DEF=90°且有CD=EF所以四边形ECFD为矩形,有DF=EC∠DFB=∠ECF=90°有因为点D