如图 半径为2根号5的圆o内有互相垂直
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 10:05:57
注意到顶点横坐标为抛物线与X轴交点横坐标之和的一半,设顶点为P,与x轴交于M(m,0)、N(n,0)(a〉b).则有PM=PN,所以MN为斜边.又:MN=2,所以m=n+2在有,因为PM=PN,三角形
如图,O从A移动到途中O点处与BC相切于D点, 则OD=根号三,且OD垂直于BC. 可以求出BO长为2;所以
连接OC,交AB于D,连接OB∵C是弧AB的中点∴OC⊥AB(平分弧对直径垂直于弧所对的弦)则OD=1,设OB=OC=r,CD=r-1DB²=OB²-OD²DB²
1、不知道A在x轴上,还是y轴上我只能猜A在x轴上且在正半轴,B在y轴上了,且在正半轴.OB=4tan∠BAO=2则OA=2B坐标(0,4)A坐标(2,0)当角CPD=90度时,那么四边形CODP是正
解(1)∠BCD=∠BAD∵∠BPC=90º,BF=CF∴PF=CF=BF∠CPF=∠PCF又∵∠CPF=∠EPD且∠EDP=∠ADP∴三角形ADP∽三角形PDE∴∠DEP=90º
由垂径定理得OC垂直平分AB,设OC交AB于E,则AE=根6/2..连接OA,在Rt△OAE中,OA=R,OE=R/2,AE=根6/2,由勾股定理得;R=根2..再问:为什么OE=R/2再答:因为题目
已知,等边三角形ABC边长为4根3..则面积s=1/2(4根3)²sin60°=12根3..设△ABC的内切圆的半径为R,则s△ABC=3×(1/2×4根3R)=6根3R.所以R=2...即
(1)连结OA、OB,则角AOB=45°,作AM⊥OB,容易求出AM=1,△AOB的面积=√2/2,所以八边形的面积为4√2(2)∠AOD=30°,∠AOC=120°,∴∠COD=90°,CD=5倍根
解(1)∠BCD=∠BAD∵∠BPC=90º,BF=CF∴PF=CF=BF∠CPF=∠PCF又∵∠CPF=∠EPD且∠EDP=∠ADP∴三角形ADP∽三角形PDE∴∠DEP=90º
(1)证明:∵F为BC的中点,△BPC为Rt△,∴FP=FC,∴∠C=∠CPF.又∠C=∠A,∠DPE=∠CPF,∴∠A=∠DPE.∵∠A+∠D=90°,∴∠DPE+∠D=90°,∴EF⊥AD;(2)
因为AB^2=OA^2+OB^2=20+80=100所以AB=10cm而三角形ABC的面积为:0.5*OA*OB=0.5*AB*OC即:0.5*2根号5*4根号5=0.5*10*OC解得:OC=4cm
因为三角形OAB为直角三角形所以根据勾股定理可得AB=√(OA²+OB²)=10然后计算三角形OAB的面积=OA×OB/2=AB×OC/2于是带入数值计算可得OC=4这样OC的长度
这位同学,首先您的图没有,所以我现在只能假设您的圆O圆心是在坐标原点.那么该圆的方程为x方+y方=1,则与y=-x+根号2组成一个二元二次方程,很容易解得x=根号2/2,y=根号2/2即圆与直线的有唯
连接BD,则角ADB=90度角ABD=角ADC=角D(同为BDC的余角)在Rt△ADB中,sinABD=AD/AB=2*5(1/2)/5cosABD=(1-cos^2ABD)^(1/2)cosABD=
解(1)∠BCD=∠BAD∵∠BPC=90º,BF=CF∴PF=CF=BF∠CPF=∠PCF又∵∠CPF=∠EPD且∠EDP=∠ADP∴三角形ADP∽三角形PDE∴∠DEP=90º
阴影部分是哪里?再问:bca那个部分、、再答:三角形oab面积是2分之一乘2乘2倍的根3扇形boc面积是6分之一乘派乘2的平方,两个面积想减就是了
第一个问题:取AC的中点为D.∵OA=OC=2√2,∴OD⊥AC,∴OD=√(OA^2-AD^2)=√[(2√2)^2-4]=2.即:以O为圆心,与AC相切的圆的半径是2.第二个问题:∵AB=2√3<