如图 以rt aoc的顶点o为圆心

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:07:52
如图 以rt aoc的顶点o为圆心
如图 以六边形的顶点为圆心,以单位1为半径画圆,则图中阴影部分面积和为.

多边形的外角和为360°所以这些阴影恰好拼成一个圆1*1*3.14=3.14

如图,分别以四边形的各个顶点为圆心,1为半径作圆,求图中阴影部分的面积.

任何四边形的内角和都是360°.因为圆周角是360°,所以,四个阴影的面积之和就=一个圆的面积所以,面积=π×1²≈3.14.

如图是以三角形的顶点为圆心,以1cm为半径画圆,则图中阴影的面积是.

1/2派,三角形内角和为180度,所以阴影部分面积之和为半径是一的圆面积的一半

如图,已知直角三角形AOC中较短的直角边OA的长为2,以直角顶点O为圆心,以OA为半径作弧AB,点B在边OC上,图中,在

s1等于s2那么也就是四分之一圆的面积等于三角形的面积四分之一圆的面积是3.14那么三角形的面积也是3.14oc就等于3.14除以2再乘以2等于3.14所以bc等于1.14

如图,设椭圆y2a2+x2b2=1(a>b>0)的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,O

(1)因OP是圆A、圆B的公共弦,所以OP⊥AB,即kAB•kOP=-1,所以kAB=−23,又kAB=−ab,所以b2=34a2,所以a2−c2=34a2⇒e=ca=12;(2)由(1)有b2=34

已知,如图,以O为圆心,OA为半径画弧,∠AOB=120°,弓形高ND=4厘米,矩形EFGH的两顶点E,F在弦AB上,H

连结OH,如图,设⊙O的半径为R,则OA=R,ON=OD-DN=R-4,∵OA=OB,∠AOB=120°,∴∠OAB=30°,在Rt△AON中,OA=2ON,∴R=2(R-4),解得R=8,∵OD⊥E

如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.

如图,以ΔABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD,

证明:在△CDA与△ABC中CD=AB(已知)AD=BC(已知)CA=AC(公共边)∴△CDA≌△ABC(SSS)∴∠D=∠B(全等三角形的对应角相等)

如图,o为正方形ABCD对角线上一点,以o为圆心,OA的长为半径的○O与BC 相切于M,

o是哪个对角线上的点!应该是对角线AC上的一点吧!由于是正方形对角线AC上的点则O到BC和DC的距离是一样的.这个圆和BC相切,当然也和CD相切了

如图,已知正方形ABCD的边长为2,以顶点A,B为圆心,2为半径的两弧交于点E,以顶点C,D为圆心,2为半径的两弧交于点

连接BE,AE,延长FE交CD于H,反向延长FE交AB于G,AE=BE=2,EG是AB的垂直平分线(三线合一).所以AG=BGAF垂直于AB,AG=BG=1,有勾股定理得EG=根号3,那么EH=2-根

=如图,已知△abc的三个顶点在以o为圆心的圆上,ad是△abc的高,ae是以o为圆心的圆上直径,求证ab×ac=ad×

连接BE∵AE为圆O直径∴∠ABE=90°∵AD为△ABC的高∴∠ADC=90°在△ABE与△ADC中,∠ABE=∠ADC,∠E=∠C(同弧所对的圆周角相等)∴△ABE∽△ADC∴AB/AD=AE/A

如图 分别以△ABC的三个顶点为圆心,1为半径做圆

(1)三角形的内角和为180°所以各圆心角的和为180°阴影面积就是拼接成一起得到的扇形面积为π1²*180°/360°=π/2(2)四边形的内角和是360°所以各圆心角的和为360°阴影面

如图,在正方形abcd中,o是边cd上一点,以o为圆心...

设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC

如图,以正方形ABCD的边CD为直径作圆O,以顶点C为圆心、边CB为半径作弧BD,E为BC的延长线上一点,且CD,CE的

:(1)连接CF,∵CD、CE的长为方程x2-2(+1)x+4=0的两根;∴CE=2,CD=2;∵∠DCE=90°,∴tan∠CDE=cd∴∠CDE=60°;∵CD是⊙O的直径,∴∠DFC=90°;∴

如图16,在以O为圆心的两个同心圆中,AB经过圆心O

(1)BC所在直线与小圆相切过O作OF⊥BC在直角△ACO和直角△OCF中,∠AC0=∠FCO,∴AO=FO又AO为半径,所以F在小圆上,所以直线BC外切于小圆(2)关系:BC=AD+AC在直角△AC

如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆

这个菱形的边长为3,高为2,以一个顶点为圆心画一段圆弧,如图

“213601393”:(1)先求菱形面积=3×2=6(2)求菱形一个锐角的度数,正切=对边/斜边=2/3≈0.6666667查表或按计算机得皮角为41°49′≈41.82°(3)扇形部份面积=3&s