如图 三角形abc与以ab为直径的圆o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:22:23
如图 三角形abc与以ab为直径的圆o
如图,三角形ABC为等腰三角形,AB=AC,以AB为直径的圆O与BC交于点D

(1)因为D在圆周上,所以∠ADB=90°,所以AD垂直BC于D点,且AB=AC,所以D为bc中点(2)连接圆心O与D,因为OD=AO=BO=2,且DE⊥AB,DE=1,所以BD=2,DE根号3再问:

已知:如图,在三角形ABC中,AB=AC,以BC为直径的半圆……

连接OD,得OD⊥DE,得OD‖ACOD=OB(半径相等),得∠DBO=∠BDO由于OD‖AC,得∠ACB=∠DOB=∠OBD得三角形DBO三内角相等,为等边三角形∠BDO=∠BAC因此,三角形ABC

1、如图,已知三角形ABC中,AB=AC,以AB为直径做圆O交BC与D,过D做DE垂直AC于E,求证:DE是圆O的切线.

1、连接OD∵AB=ACOB=OD∴∠B=∠C∠B=∠ODB∴∠C=∠ODB∴OD∥AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线.2、∵AD是⊙O的直径∴∠ACD=90°∴∠DAC+∠D=90°∵∠

如图,以BC为直径的圆与三角形的两条边AB,AC,分别交与D,E两点,且BD=EC,求证三角形ABC是等腰三角形

证明:∵BD=EC∴弧BD=弧EC而弧BDE=弧BD+弧DE,弧CED=弧EC+弧DE∴弧BDE=弧CED∴∠C=∠B∴三角形ABC是等腰三角形

如图,已知,以Rt三角形ABC的直角边AB为直径做圆O,与斜边AC交与点D,E为BC边上的中点,连接DE.求证:DE是圆

思路,只要证明ODE为直角即可.容易得知BDC为rt三角形,根据中线定理,DE=BE,又有OD=OB,连接OE,公共边,可得,三角形ODE全等OBE,则角ODE为直角.

如图三角形ABC中,CA=CB,以BC为直径的圆O交AB与D,圆O的切线DE交AC于E

(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD

如图,已知以三角形ABC的边BC为直径的半圆交AB与D,交AC与E,过E作EF垂直BC,且BF:FC=5:1,AB=8,

连接BE,BC是直径===>角BEC=角BEA=90,勾股定理:BE^2=AB^2-AE^2根据射影定理:BE^2=BF*BC,所以:AB^2-AE^2=BF*BC,BF:FC=5:1==>BF=5B

有助于回答者给出准确的答案如图 在三角形abc中,AB=AC.以腰长AB为直径画半圆O,分别交BC,AC与2点D,E

1.连接AD.则有∠ADB=90°(直径所对的圆周角)即AD⊥BC因为AB=AC所以BD=BC(等腰三角形底边上的高是底边的平分线)2.等腰三角形底边上的高是顶角的角平分线∠BAC=40°,所以∠BA

如图,三角形ABC中,AB=AC,AE=1/3AB,以AB为直径作圆交BC与D点,连接AB交CE于F点.求证:AF=FD

证明:过D做DM∥CE∵AB为圆O直径,∴BDA=90°又∵AB=AC∴BD=DC∴BM=EM又∵AE=1/3AB∴AE=EM∵MD∥EC∴AF=FD图在这里http://hi.baidu.com/%

如图,在三角形ABC中,AB=AC,以腰AB为直径画半圆O,分别交BC,AC于点D,E.

1.连接AD.则有∠ADB=90°(直径所对的圆周角)即AD⊥BC因为AB=AC所以BD=BC(等腰三角形底边上的高是底边的平分线)2.等腰三角形底边上的高是顶角的角平分线∠BAC=40°,所以∠BA

一道数学题,如图,在三角形ABC中,AB=AC,以AB为直径的圆O分别交AC

1)连AE,因为AB为直径所以∠AEB=90因为AB=AC所以∠BAE=∠CAE=(1/2)∠BAC(三线合一)因为∠CBF=(1/2)∠BAC所以∠CBF=∠BAE因为∠BAE∠ABE=90所以∠A

已知,如图,在三角形ABC中,AB=AC。以腰AB为直径作半圆O,分别交BC,AC于点D,E 问

 再问:为什么那个角等于九十度他没说那是中点不能直接说再答:圆直径所对的角是直角再答:所以三线合一再问:哦哦谢谢再问:哦哦谢谢

如图,在三角形ABC中,AB=AC,以AB为直径的圆O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为E

改正题目,应是已知AB=BC(1)因为AB=BC所以角A=角C又因为OA=OB所以角A=角ABO所以角C=角ABO所以OD平行于BC又因为DF垂直于BC所以OD垂直于DF直线DE是圆O的切线先给第一问

如图,在三角形ABC中,已知角ABC=90度,在AB上取一点E,以BE为直径的圆O恰与AC相切于点D,若AE=2cm,A

连接D、O.OD为圆半径.因为AC为圆的切线,显然OD垂直于AD(1)设圆的半径为r那么在直角三角形AOD中(r+AE)^2=AD^2+r^2(r+2)^2=4^2+r^2r^2+4r+4=16+r^

如图在RT三角形ABC中,AB=BC,以AB为直径做半圆,圆O交AC于点D,连接DB做DE垂直BC,垂足为E,求DE与圆

DE垂直BC且ABC为RT三角形所以DE平行OB又角B为直角所以OD垂直DE所以DE与圆O相切

如图,已知三角形ABC中,AB=AC,以AB为直径作圆O,交BC于D,交AC于F,过D作DE垂直AC于E ,已知DE与圆

AB为直径,∠ADB=90°,∠AFB=90°,又AB=AC所以,D为BC中点,又DE⊥AC,所以DE//BF,所以E为CF中点,所以DE是CF的垂直平分线再问:为什么E为CF中点再答:中位线定理DE

如图 三角形abc中 ab ac 以ab为直径做圆o,交bc于d,de垂直ac与e,连oe,求证ae为圆o的切线

连接AD,AB为直径,所以∠ADB=90°,又AB=AC,所以AD是中线即BD=DC,而AO=OB,所以OD是中位线,即OD=AC/2,且OD//AC作OF⊥AC交AC于F,连接OD,则OF//DE,

如图,在三角形ABC中,∠C=60,以AB为直径的半圆O分别与AC边,BC边交于点D,E

O为AB中点.OA=OB=OD=OE=R,所以∠OAD=∠ADO,∠OBE=∠BEO,又∠C=60°,所以∠OAD+∠OBE=120°,所以∠ADO+∠BEO=120°,∠BED+∠ADE=240°,

如图三角形ABC中,AB=4,以BC为直径的圆O1交AC边于点D,D为AC中点,且DE⊥AB.若BC⊥AB,圆O2与圆O

以BC为直径的圆O1与AC交于AC的中点D,∴BD⊥AC,AD=DC,∴BC=AB=4,BO1=2,DE⊥AB,BC⊥AB,设圆O2的半径为r,则O1O2=(2-r)√2=r+2,∴2√2-2=(√2