如图 rt三角形aob的两条直角边oa ob 分别在x轴的负半轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:42:58
显然⊿ADE≌⊿ADE,得∠ADE=∠ABC.又∠MAD=∠HAC=∠ABC,所以∠MDA=∠MAD,得MD=MA.同理可得ME=MA所以:MD=ME,即:M是DE中点.
证明:∵四边形ABCD是平行四边形∴AB∥CD且∠AOB=∠COD∴∠OAB=∠OCD,∠OBA=∠ODC∵AB=CD∴ΔAOB≌ΔCOD
(1)、A为(0,3)、B为(4,0);(2)、AP=t,OP=OA-AP=3-t,P点坐标为(0,3-t),AB=v(OA^2+OB^2)=v(3^2+4^2)=5,——》sin∠B=OA/AB=3
(1)作图如图所示.A(-2,0),C(1,2);(2)由已知得:点B坐标为(0,-1),点D坐标为(1,0);设过A、B、D三点的二次函数解析式为y=a(x+2)(x-1),将点B(0,-1)代入y
本题是一次函数的综合题型,其中涉及到的知识点有运用待定系数法求一次函数的解析式,一元二次方程的解法,相似三角形的判定与性质,正方形的性质,综合性较强,难度适中.运用数形结合,分类讨论及方程思想是解题的
(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD中,AD=OA+OD=3,CD=2,∴AC2=CD2+AD2=22+32=13,∴AC=13.
证明:(1)过点P作PM⊥OA于M,PN⊥OB于N.又∵P为∠AOB的平分线OC上的任意一点,∴PM=PN.又知∠MPN=∠EPF=90°,故∠EPM=∠FPN=90°-∠EPN,在△PM
1.作PM⊥AO于M,PN⊥BO于N根据角平分线的特性,可知PM=PN又∠MPE=90°-∠EPN=∠NPF∠PME=90°=∠PNF∴△PME≌△PNF∴PE=PF2.仍然成立,证明方法同1..
再答:亲,如果帮到您了,请给个好评,多谢!还可以继续追问我.
在三角形ABC中,1=2,三=四,所以∠EPC=3n°时,PE=PF
1由于角平分线上的点到角两边的距离相等,所以EC=ED因为等角对等边,所以∠ECD和∠EDC相等2因为∠ECO=∠EDO=90°∠COE=∠DOEOE=OE所以两个三角形全等则OC和OD相等3设OE与
过点P作PM⊥OA于M,PN⊥OB于N,∴∠PME=∠PNF=90°,∵∠AOB=90°,∴四边形PMON是矩形,∴∠MPN=90°.∵∠EPF=90°,∴∠MPN=∠EPF,∴∠MPE-∠MPN=∠
是这题目吗?在平面直角坐标系中,三角形AOB的位置如图,已知∠AOB=90°,AO=BO,点A的坐标为[-3,1],求:求点B的坐标;2.求过A,O,B三点的抛物线的解析式;3.设点B关于抛物线的对称
用射影定理,设时间为t,角AMN为直角,t的平方等于1乘以2t再问:����дһ�¾��岽��ô��3Q
(1)解方程x2-7x+12=0,得x1=3,x2=4,∵OA<OB,∴OA=3,OB=4.∴A(0,3),B(4,0).(2)在Rt△AOB中,OA=3,OB=4,∴AB=5,∴AP=t,QB=2t
再答:再问:谢谢!那BE和CF的关系怎么证?
点c在哪?再问:这就是c点,帮忙回答一下,谢谢再答:这个图和你描述的可不一样。将RtΔAOB绕点o按顺时针方向旋转90°,形不成图里的样子不过图里的ac的距离好求CB=OA,所以AC=√[(OA+OB
连接CD∵AC为⊙O直径∴∠CDA=90°(圆周角性质)即AB⊥CD由勾股定理可知:AB=5cm由面积相等可知CD=AC×BC/AB=2.4cm∴根据勾股定理,AD=1.8cm