如图 d是三角形abc中边bc的中点,连接AD并延长
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:10:43
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
22线段中垂线上的点到线段两端点距离相等
延长ED,使DG=DE,连接CG、FG,∵DF⊥EG,∴EF=FG∵ΔDEB≌ΔGCD(边,角,边)∴BE=CG∵CF+DG>FG(Δ两边之和大于第三边)又∵GF=BE,FG=EF∴BE+CF>EF
连接EC,EB因为EA是角CAB的平分线又已知EF垂直AB于点F,EG垂直AC交AC的延长线于点G所以,易知EG=EF又有ED垂直平分BC同样易知EC=EB所以两个直角三角形CGE和BFE全等所以BF
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
分析: 设BC=a,AC=b,由∠l=∠2=∠3,得到△ABC∽△EBD∽△DAC,通过相似比得
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
∵D为BC中点,∴SΔABC=2SΔABD,∵E为AD中点,∴SΔABD=2SΔABE,∴SΔABC=4SΔABE=4.
证:AH⊥BC交EF于G点∵D,E,F,分别是边BC,CA,AB的中点∴AE=EC,AF=FB,BD=DC根据三角形的中位线定理,可得FH=1/2AC,EF=1/2BC,DE=1/2ABFH‖AC,E
答:(1)四边形ADEF是平行四边形,因为EF与AB平行、DE与AC平行,所以是平行四边形.(2)角DEF是角BAC,角EDF是角ACB,角DFE是角ABC,因为角EDF与角AFD相等,角AFD与角A
解题思路:三角形解题过程:你好,题目吧完整,请你补充好然后老师再解答最终答案:略
证明:ad=ab+bd=bc+bd在三角形bdc中:bc+bd>dc所以ad>dc证毕.
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线
"角边角定理"两角夹一边那个定理AD=DEAB=BC∠ADC=∠BDE(对顶角)然后全等再问:有一步错了再答:AD=DEBD=DC我就是想想没画在纸上
c=ac-abad=ab+1/2bc=1/2(ab+ac)ad.bc=1/2(ab+ac)(ac-ab)=1/2[ac.ac-ab.ab]=1/2[3*3-4*4]=-7/2
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线再问:可是我证明了两次再问:我证明完三角形BDC全等于三角形FPC
三角形ACD的周长36-16=20DE是边BC的垂直平分线,所以BD=CD三角形ABC周长=AC+BC+AB=AD+BD+BC+AC三角形ACD周长=AC+CD+AD就是三角形ABC周长-BC=三角形
解题思路:梯形解题过程:在△ABC中,D,E,F是三角形ABC各边的中点,AG垂直于BC.垂足为G.求证:四边形DEFG是等腰梯形证明:∵AG⊥BC,F为AC的中点∴FG=1/2AC(直角三角形中斜边
解题思路:延长AD到M,使AD=DM,连接BM,CM,根据平行四边形的判定得到平行四边形ABMC,推出AC=BM,根据三角形的三边关系定理得出AB+BM>AM,代入求出即可.解题过程: