如图 d e f分别是三角形abc三边上的中点 ah是高

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:29:10
如图 d e f分别是三角形abc三边上的中点 ah是高
如图,三角形ABC~三角形DEF,AB:DE=k,AM,DN分别是三角形ABC和三角形DEF的高

(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

如图,三角形abc的面积是24,d,e,f,分别是bc,ac,ad的中点,求三角形def的面积

3再问:能否说出过程呢再答:ABD=ADC再问:嗯嗯再答:AFE:ADC=1:4再答:AFE=DFE再问:Afe:adc=1:4是什么意思再答:中位线知道嚒再问:不知道再答:底两倍高两倍再答:所以面积

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图,一道几何数学题D,E,F分别为三角形ABC的三条边上的三等分线,三角形ABC的面积为49,求三角形DEF的面积D,

这个题可用梅涅劳斯定理做比较有力.梅涅劳斯定理:一条直线交三角形的三边(延长线)的分比之积等于1.以图中的△ABD为例,直线FC交△ABD的三边(AD边于延长线)于F, I, C,

如图,P是三角形ABC所在平面外的一点,D,E,F分别是三角形PBC,PAC,PAB的重心,证:面DEF//ABC

利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH

如图 ,三角形ABC和三角形DEF是两个格点三角形

如图.△ABM≌△DEN△CBM≌△DFN∵AB=√(4^2+4^2)=4√2DE=√(4^2+4^2)=4√2AM=√(4^2+1^2)=√19DN=√(4^2+1^2)=√19BM=3,EN=3∴

如图,点DEF分别是三角形ABC的三条边中点,若三角形ABC的面积为S,求三角形DEF的面积

解过A点做BC的垂线交DF于点O交BC与点P.所以三角形ABC的面积为1/2AP×BC=S由于D,E,F是三遍的中点所以DE=1/2AC,DF=1/2BC,EF=1/2AB,AO=1/2AP所以三角形

如图,三角形ABC是等边三角形,点D、E、F分别在AB、BC、CA的延长线上,且BD=CE=AF.三角形DEF也是等边三

证明:因为三角形ABC是等边三角形所以AB=BC=AC∠BAC=∠ABC=∠ACB=60°又因为BD=CE=AF所以AD=BE=FC,∠FAD=∠DBE=∠ECF=120°根据SAS,可以得出⊿FAD

如下图.三角形ABc中,D、E、F分别是BC、AD、BE的二、三、四等分点,三角形DEF面积为30平方厘米,求三角形AB

因为点F是BE的四等分点所以三角形DEF的面积是三角形BED面积的四分之三所以三角形BED面积=30/四分之三=40平方厘米同理三角形ABD面积=40/三分之二=60平方厘米三角形ABC面积=60/二

如图,点d,e,f分别是三角形abc各边中点,证明三角形ade,三角形bdf,三角形cef,三角形def全等

如图∵d,e,f分别是三角形abc各边的中点∴de,ef,df分别为三角形的三条中位线∴df‖bc,de‖ac,ef‖ab∴df=be=ce,de=af=cf,ef=ad=bd∴△ade≌△bdf≌△

如图在三角形ABC中,求做等边三角形DEF,使它的三个顶点分别在三角形ABC的三条边上,且EF平行于BC

向ABC外侧做等边三角形BCG,连接AG交BC于D,过D引BG的平行线交AB于E,引CG的平行线交AC于F,那么DEF即为所求.

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,角DEF=20°,则角BAC等于

∵AD为角平分线∴DE=DF,∵DE、DF为高、AD=AD∴△ADE≌△ADF(HL)∴AE=AF∴∠AFE=∠AFE又∵∠DEF=20°∴∠AEF=70°∴∠EAF=40°

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,求证:(1)角DEF=角DFE,(3

 (1)∵AD为角平分线∴DE=DF(角平分线到两边距离相等)∴∠DEF=∠DFE(等边对等角) (2)△ADE≌△ADF(HL)∴AE=AF

如图,把三角形ABC三边分别三、四、五等分,△DEF面积是△ABC面积的______.

连接CD,做AG垂直BC,FH垂直BC,把三角形ABC的面积看作1,在三角形ABC与三角形BCD中,底相等,三角形BCD的高与三角形ABC的高的比是2:3,所以三角形BCD的面积:23,在三角形CDE